화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.6, 654-661, November, 1993
테트라메틸 비스페놀-A 폴리카보네이트와 스티렌-아크릴로니트릴 공중합체와의 사용성
FT-IR Studies on Miscibility of Tetramethyl Bisphenol-A Polycarbonate and Styrene-Acrylonitrile Copolymers
초록
테트라메틸 비스페놀-A폴리카보네이트, TMPC와 몇가지 스티렌/아그릴로니트릴 공중합체, SAN과의 블렌드를 제조하고 FT-IR 및 DSC로써 이들의 상용성을 조사하였다. 이크릴로니트릴의 함량이 10% 미만인 SAN은 TMPC와 조성에 관계없이 단일 유리전이 현상을 나타내었으며, 블렌드몰에서 카르보닐기에 의한 신축진동 흡수띠가 낮은 주파수로 이동함을 FT-IR로써 확인하였다. 또한 AN함량이 증가함에 따라 LCST현상에 의한 상분리온도가 상승됨을 관찰하였다. 이상의 결과로부터 블랜드 조성성분간의 수소결합 엔탈피를 계산하였으며 이들의 상용성을 이성분 상호작용모델로써 고찰하였다.
The miscibility of tetraimethyl bisphenol-A polycarbonate(TMPC) with polystyrene(PS) and with styrene-acrylonitrile(SAN) r()polymers In various AN content were studied bt using : FT-IR spartroscopy and differential scanning calorimetry(DSC) The blends of TMPC and SAIN having acrylonitrile contents equal to or less than 10% by weight showed a single glass transition which changes monotonously with blend composition. Furthtermore, the phase separation temperature of TMPC/SAN blends increased as the AN content in SAN increased up to 10 wt%. The results of FT-IR analysis showed that the carbonyl stretching peak was shifted to lower frequency with blend composition and that the calculated value of enthalpy of hydrogen bonding formation(ΔH) was increased with raising of AN content up to 10 wt%. These results were interpreted by the recent theories of binary interaction model.
  1. Coleman MM, Graf JF, Painter PC, "Specific Interation and The Miscibility of Polymer Blends," Technomic Publishing Company, Lancaster, Pennsylvania (1991)
  2. Olabisi O, Robeson LM, Shaw MT, "Polymer-Polymer Miscibility," Academic Press, New York (1979)
  3. Han CD, "Polymer Blends and Composites in Multiphase Systems," ACS, Washington, D.C. (1984)
  4. Paul DR, Newman S, "Polymer Blends Vols. I and II," Academic Press, New York (1979)
  5. Utracki LA, Weiss RA, "Multiphase Polymer: Blends and Ionomers," American Chemical Society, Washington, D.C. (1989)
  6. Garcia D, Starkweather HW, J. Polym. Sci. B: Polym. Phys., 23, 537 (1985)
  7. Howe SE, Painter PC, Coleman MM, Macromolecules, 18, 1676 (1985) 
  8. Senich GA, Macknight WJ, Macromolecules, 13, 106 (1980) 
  9. Lee KH, Painter PC, Coleman MM, Macromolecules, 19, 2149 (1986) 
  10. Kwei TK, Pearce EM, Ran F, Chen JP, J. Polym. Sci. B: Polym. Phys., 24, 1597 (1986) 
  11. Fowkes FE, Tischler DO, Wolfe JA, Halliwell MJ, J. Polym. Sci. A: Polym. Chem., 22, 547 (1984)
  12. Cangelosi F, Shaw MT, Polym. Eng. Sci., 23, 669 (1983) 
  13. Suzuki T, Pearce EM, Kwei TK, Polymer, 33, 198 (1992) 
  14. Choe SJ, Williams DJ, Karasz FE, Macknight WJ, Macromolecules, 21, 231 (1988) 
  15. Musto P, Karasz FE, Macknight WJ, Polymer, 30, 1012 (1989) 
  16. Musto P, Karasz FE, Macknight WJ, Polymer, 32, 3 (1991) 
  17. Moskala EJ, Coleman MM, Polymer, 24, 251 (1983) 
  18. Howe SE, Coleman MM, Macromolecules, 19, 72 (1986) 
  19. Ahn TO, Lee YJ, Lee SM, J. Macromol. Sci.-Phys., 29(1), 91 (1990)
  20. Soh YS, J. Appl. Polym. Sci., 44, 371 (1992) 
  21. Krings LHM, Buning GHW, Nies E, J. Appl. Polym. Sci., 44, 225 (1992) 
  22. Kunori T, Geil PH, J. Macromol. Sci.-Phys., 17, 543 (1980)
  23. Shaw MT, J. Appl. Polym. Sci., 18, 449 (1974) 
  24. Fernandes AC, Barlow JW, Paul DR, Polymer, 27, 1788 (1986) 
  25. Fernandes AC, Barlow JW, Paul DR, Polymer, 27, 1799 (1986) 
  26. Coleman MM, Painter PC, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C16, 1975 (1978)
  27. Lemieux E, Prudhomme RE, Macromolecules, 21, 2148 (1988) 
  28. Varnell DF, Runt JP, Coleman MM, Polymer, 24, 37 (1983) 
  29. Coleman MM, Zarian J, J. Polym. Sci. B: Polym. Phys., 17, 837 (1979)
  30. Moskala EJ, Howe SE, Painter PC, Coleman MM, Macromolecules, 17, 1671 (1984) 
  31. Paul DR, Barlow JW, Polymer, 25, 487 (1984) 
  32. Kambour RP, Bendler JT, Bopp RC, Macromolecules, 16, 753 (1983) 
  33. Brinke GT, Karasz FE, Macknight WJ, Macromol. Theory Simul., 16, 1827 (1983)
  34. Min KE, Paul DR, Macromolecules, 21, 2828 (1987) 
  35. Keitz JD, Barlow JW, Paul DR, J. Appl. Polym. Sci., 29, 3131 (1984)