화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.30, No.8, 1113-1122, 2007
Decomposition of a lignin model compound under hydrothermal conditions
Lignin, which is the second most abundant polymeric aromatic organic substance in wood biomass after cellulose, and contains many oxygen-based functional groups, has been proposed as an alternative source of chemical compounds. Guaiacol, a model compound for lignin, was reacted in supercritical water using a batch-type reactor at temperatures of 653-673 K and various pressures under an argon atmosphere. The effects of temperature and reaction time at the same pressure were combined into a single severity parameter that was used to monitor the decomposition of guaiacol to its derived compounds. The main products in aqueous solution were catechol, phenol, and o-cresol. The amounts present approached 40.73 wt %, 14.18 wt %, and 4.45 wt %, respectively. With an increase in the reaction time at the same conditions, the amount of guaiacol decreased and the quantity of derived compounds of guaiacol increased. Based on the experimental results, a reaction mechanism for the decomposition of guaiacol was proposed. The process investigated in this study may form the basis for an efficient method of wood biomass decomposition.