화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.1, 1-5, January, 2008
The Central Concept for Chitin Catabolic Cascade in Marine Bacterium, Vibrios
E-mail:
The enzymatic hydrolysis of chitin has been studied for almost a century, and early work established that at least two enzymes are required, a chitinase that mainly yields the disaccharide N,N'-diacetylchitobiose, or (GlcNAc)2, and a “chitobiase”, or β-N-acetylglucosaminidase, which gives the final product GlcNAc. This pathway has not been completely identified but has remained the central concept for the chitin catabolism through the 20th century1 including in marine bacteria.2 However, the chitin catabolic cascade is quite complex, as described in this review. This report describes three biologically functional genes involved in the chitin catabolic cascade of Vibrios in an attempt to better understand the metabolic pathway of chitin.
  1. Wood WA, Kellog ST, Methods Enzymol., 161 (1988)
  2. Soto-Gil RW, Zyskind JW, in Chitin, Chitosan and Related Enzymes, J. P. Zikakis, Ed., Academic Press, Orlando, FL. (1984)
  3. Bassler BL, Gibbons PJ, Yu C, Roseman S, J. Biol. Chem., 266, 24268 (1991)
  4. Bassler BL, Yu C, Lee YC, Roseman S, J. Biol. Chem., 266, 24276 (1991)
  5. Bassler BL, Roseman S, J. Biol. Chem., 268, 9405 (1993)
  6. Yu C, Lee AM, Bassler BL, Roseman S, J. Biol. Chem., 266, 24260 (1991)
  7. Keyhani NO, Roseman S, Biochem. Biophys. Acta., 1473, 108 (1999)
  8. Keyhani NO, Wang LX, Lee YC, Roseman S, J. Biol. Chem., 271, 33409 (1996)
  9. Keyhani NO, Roseman S, J. Biol. Chem., 271, 33414 (1996)
  10. Keyhani NO, Roseman S, J. Biol. Chem., 271, 33425 (1996)
  11. Keyhani NO, Roseman S, J. Biol. Chem., 271, 33433 (1996)
  12. Keyhani NO, Roseman S, J. Biol. Chem., 271, 33457 (1996)
  13. Keyhani NO, Li X, Roseman S, J. Biol. Chem., 275, 33068 (2000)
  14. Voet JG, Abeles RH, J. Biol. Chem., 245, 1020 (1970)
  15. Mieyal JJ, Abeles RH, in The Enzymes, P. D. Boyer, Ed., Academic Press, New York, 1972, Vol. 7, pp. 515-532
  16. Kitaoka M, Sasaki T, Taniguchi H, Biosci. Biotechnol. Biochem., 56, 652 (1992)
  17. Park JK, Keyhani NO, Roseman S, J. Biol. Chem., 275, 33077 (2000)
  18. Segel IH, Biochemical Calculations, 2nd Ed. , John Wiley & Sons, New York (1976)
  19. Kundig W, Ghosh S, Roseman S, Proc. Natl. Acad. Sci., U.S.A., 52, 1067 (1964)
  20. Postma PW, Lengeler JW, Jacobson GR, Microbiol. Rev., 57, 543 (1993)
  21. Roseman S, J. Biol. Chem., 226, 115 (1957)
  22. Davidson EA, Blumenthal HJ, Roseman S, J. Biol. Chem., 226, 125 (1957)
  23. Comb DG, Roseman S, J. Biol. Chem., 232, 807 (1958)
  24. Plumbridge J, Mol. Microbiol., 3, 505 (1989)
  25. Plumbridge J, Mol. Microbiol., 5, 2053 (1991)
  26. Plumbridge J, Nucleic Acids Res., 29, 1 (2001)
  27. Reissig JL, J. Biol. Chem., 219, 753 (1956)
  28. Fernandez-Sorensen A, Carlson DM, J. Biol. Chem., 246, 3485 (1971)
  29. Carlson DM, Methods Enzymol., 8, 179 (1966)
  30. Asensio C, Ruiz-Amil M, Methods Enzymol., 9, 421 (1966)
  31. Park JK, Wang LX, Roseman S, J. Biol. Chem., 277, 15573 (2002)
  32. Park JK, Wang LX, Patel HV, Roseman S, J. Biol. Chem., 277, 29555 (2002)
  33. Dharmawardhana DP, Ellis BE, Carlson JE, Plant Physiol. (Bethesda), 107, 331 (1995)
  34. Castle LA, Smith KD, Morris RO, J. Bacteriol., 174, 1478 (1992)