화학공학소재연구정보센터
Polymer(Korea), Vol.32, No.1, 1-6, January, 2008
페놀 수지를 이용한 NBR/냉연강판 접착계에 미치는 NBR 조성의 효과
Effect of NBR Component on Adhesion Behaviors between NBR and Metal Joints Using Phenol Adhesive
E-mail:
초록
Acrylonitrile butadiene rubber(NBR)의 접착력 및 가공성을 향상시키기 위한 연구를 하였다. 최상의 조건을 선별하기 위해서 NBR의 acrylonitrile(ACN) 함량에 따른 접착 물성 및 가공성을 관찰하였다. 무니 점도, 충전제, 가소제 및 가교제가 접착력에 미치는 영향도 조사하였다. NBR의 ACN 함량은 NBR sealing에서 접착거동 및 가공성에 큰 영향을 미침을 알 수가 있었다. 최상의 혼합 조건을 알기 위해서 분산도를 조사하였다. 분산도는 혼합순서, 시간 및 온도 등의 많은 인자들에 의해 영향을 받는 것이 확인되었다. 가교시스템은 황 가교시템, 과산화물 가교시스템, 가교밀도 및 구조 등의 관찰로 연구하였다. 접착제의 변화는 건조 상태와 hexamine 함량 등과 같은 것으로부터 NBR과 접착제 사이의 관계를 연구하였다. 이 결과 접착 물성과 가공성은 ACN 함량 및 가교시스템에 따라 차이를 보였다.
The adhesion behaviors and processability of NBR as a sealing material were investigated. In order to find the optimum formulation, the adhesive properties and processability were observed as the change of the contents of acrylonitrile (ACN) in NBR. Effects of Mooney viscosity, filler, plasticizer and crosslinking agent on the adhesion behaviors were also studied. The contents of ACN in NBR have great effects on adhesion behaviors and processability in NBR sealing. To know the optimum condition of roll mixing, degree of dispersion was investigated. It was confirmed that degree of dispersion was influenced by various factors such as mixing order, time, and temperature. The crosslinking system was studied as the observation of sulfur system, peroxide system, crosslinking density, and structure. From the variation of the dry condition and hexamine contents, the relation between adhesive and NBR was studied. These results show the adhesion properties and processability are dependent on the contents of ACN and crosslinking system.
  1. Korea Institute of Footwear & Leather Technology, Intro-duction to Rubber Technology, Daejoo Advertising, p 71 (2000)
  2. Paul DR, Barlow JW, in Advances in Chemistry Series, S. L. Cooper and G. M. Estes, Editors, American Chemical Society, Washington, DC, Vol 176, p 315 (1979)
  3. DeLollis NJ, Adhesives, Adherend, Adhesion, Kienger Publishing Company Inc., New York, p105 (1980)
  4. Minford JD, Handbook of Aluminium Bonding Technology Data, Marcel Dekker, Inc., New York, p130 (1993)
  5. Borowitz J, Kosfeld R, Angew. Makromol. Chem., 100, 23 (1981)
  6. Achary PS, Ramaswamy R, in Proceedings of International Conference on Rubber and Rubber-Like Materials, Rubber Technology Centre, Indian Institute of Technology, Kharagpur, India, p 182 (1986)
  7. Achary PS, Ramaswamy R, Proceedings of Seminar on Science and Technology of Composites, Adhesives, Sealants, Hindustan Aeronautics Ltd., Bangalor, India, p 229 (1989)
  8. Achary PS, Ramaswamy R, Chemical Weekly(supplement on speciality chemicals), 78 (1991)
  9. Milczarek R, Rubber World, 3, 26 (1996)
  10. Bristow GM, Waston WF, Trans. Faraday Soc., 54, 1731 (1958)
  11. Zinke A, J. Appl. Chem., 1, 257 (1951)
  12. Tencher H, Dobrev D, Badev A, Angew. Makromol. Chem., 108, 61 (1982)
  13. Daniel KH, U. S. Pat. 6,843,876 (2005)
  14. Daniel KH, U. S. Pat. 6,080,493 (2000)
  15. Hiroyoshi O, Masazumi I, U. S. Pat. 5,030,515 (1991)
  16. Greeth A, Kuntstofee, 31, 345 (1941)
  17. Huttzsch K, J. Prakt. Chem., 158, 275 (1941)
  18. Van der Meer S, Rubber Chem. Technol., 18, 853 (1945)
  19. Lattimer RP, Rubber Chem. Technol., 62, 107 (1989)
  20. Saleem M, Baker WE, J. Appl. Polym. Sci., 39, 655 (1990)
  21. Nauton WJS, The Applied Science of Rubber, Edward Arnold Ltd., London, p 137 (1961)
  22. Van deer Meer S, Rev. Gen Coutch, 20, 230 (1943)
  23. Voet A, J. Polym. Sci., Macromol. Rev., 15, 327 (1980)
  24. James D, U. S. Pat. 4,594,381 (1986)
  25. Lee WS, Komu Hakhoechi, 20, 150 (1985)
  26. Ooij V, Johan W, Eur. Pat. Appl., 16 (1984)
  27. Hofman N, Riege R, Elastomeric, 114, 21 (1982)