Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.1, 92-97, February, 2008
MnO2와 금속담지활성탄의 물리적 혼합물을 이용한 NO의 저온 선택적 촉매 환원 반응
Low-Temperature SCR of NO over Physical Mixture of MnO2 and Metal-Loaded Activated Carbon
E-mail:
초록
MnO2와 K 또는 Cu 담지 활성탄으로 이루어진 혼성촉매상에서 암모니아를 환원제로 사용한 NO의 저온 선택적 촉매 환원 반응을 수행하였다. 반응물에 산소를 투입한 경우 NO의 제거율은 증가하였으며, 활성탄에 전이금속을 담지할 경우 탈질 효율이 증가한다. 수분이 존재하지 않는 경우 MnO2와 K 담지 활성탄으로 이루어진 혼성촉매가 120 ℃의 저온에서 가장 높은 탈질 효율을 보였으나, 수분이 존재할 경우 모든 촉매의 활성은 현저하게 떨어졌다. 수분 존재 시 MnO2와 질산처리/열처리를 한 Cu 담지 활성탄을 물리적으로 1 : 1 (w/w) 비율로 혼합한 촉매가 MnO2와 Cu 담지 활성탄을 단독으로 사용한 것에 비해 탈질효율이 더 우수하였다.
Selective catalytic reduction (SCR) of NO with ammonia was carried out over the physical mixture of MnO2 and K or Cu-loaded activated carbons (AC) at low temperature. Introduction of oxygen affected positively the reduction of NO. Metal-impregnated AC showed significantly enhanced catalytic activity. Without water, the mixed catalyst of MnO2 and K-loaded AC exhibited the best activity in the reduction of NO at 120 ℃. On the contrary, the activities of all the catalysts were significantly diminished in the presence of water. The mixed catalyst of MnO2 and Cu-loaded AC treated with nitric acid and heat (1 : 1, w/w) exhibited the better activity for the reduction of NO than each single catalyst in presence of water.
- Glassman I, Combustion, 2nd ed., 318, Academic Press, New York (1987)
- Hjalmarsson AK, NOx Control Technologies for Coal Combustion, 15, IEA Coal Research, London (1990)
- Benitez J, Process Engineering and Design for Air pollution Control, 254, Prentice-Hall, Englewood Cliffs, NJ (1993)
- Wood SC, Chem. Eng. Prog., 90(1), 32 (1994)
- Mochida I, Ogaki M, Fujitsu H, Komatsubara Y, Ida S, Fuel, 62, 867 (1983)
- Komatsubara Y, Ida S, Fujitsu H, Mochida I, Fuel, 63, 1738 (1984)
- Kusakabe K, Kashima M, Morooka S, Kato Y, Fuel, 67, 714 (1988)
- Richter E, Schmidt HJ, Schecker HG, Chem. Eng. Technol., 13, 332 (1990)
- Singoredjo L, Kapteijn F, Moulijn JA, Martin-Martinez JM, Boehm HP, Carbon, 31, 213 (1993)
- Ahmed SN, Baldwin R, Derbyshire F, McEnaney B, Stencel J, Fuel, 72, 287 (1993)
- Lee JK, Suh DJ, Par S, Park D, Fuel, 72, 935 (1993)
- Lee JK, Park TJ, Park D, Park S, Ind. Eng. Chem. Res., 32, 1882 (1993)
- Ku BJ, Lee JK, Park D, Rhee HK, Ind. Eng. Chem. Res., 33(11), 2868 (1994)
- Izquierdo MT, Rubio B, Environ. Sci. Technol., 32, 4017 (1998)
- Muniz J, Marban G, Fuertes AB, Appl. Catal. B: Environ., 23(1), 25 (1999)
- Teng HS, Hsu YF, Tu YT, Appl. Catal. B: Environ., 20(2), 145 (1999)
- Pasel J, Kassner P, Montanari B, Gazzano M, Vaccari A, Makowski W, Lojewski T, Dziembaj R, Papp H, Appl. Catal. B: Environ., 18(3-4), 199 (1998)
- Yoshikawa M, Yasutake A, Mochida I, Appl. Catal. A: Gen., 173(2), 239 (1998)
- Zhu ZP, Liu ZY, Liu SJ, Niu HX, Hu TD, Liu T, Xie YN, Appl. Catal. B: Environ., 26(1), 25 (2000)
- Teng H, Hsu LY, Lai YC, Environ. Sci. Technol., 35, 2369 (2001)
- Hsu LY, Teng HS, Appl. Catal. B: Environ., 35(1), 21 (2001)
- GarciaGarcia A, IllanGomez M, LinaresSolano A, deLecea CSM, Fuel, 76(6), 499 (1997)
- Hsu LY, Teng HS, Appl. Catal. B: Environ., 42(1), 69 (2003)
- Blanco J, Avila P, Suarez S, Martin JA, Knapp C, Appl. Catal. B: Environ., 28(3-4), 235 (2000)
- Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE, J. Catal., 150(1), 94 (1994)
- Kijlstra WS, Brands DS, Poels EK, Bliek A, J. Catal., 171(1), 208 (1997)
- Lee JY, Kimm SB, Hong SC, Chemosphere, 50, 1115 (2003)
- Rao N, Hougen O, Chem. Eng. Prog. Symp. Ser., 48, 110 (1952)
- Mochida I, Kisamori S, Hironaka M, Kawano S, Matsumura Y, Yoshikawa M, Energy Fuels, 8(6), 1341 (1994)
- Mochida I, Shirahama N, Kawano S, Korai Y, Yasutake A, Tanoura M, Fuel, 79, 1713 (2000)
- Rubel AM, Stewart ML, Stencel JM, J. Mater. Res., 10, 562 (1995)
- Zhu ZP, Liu ZY, Liu SJ, Niu HX, Fuel, 79(6), 651 (2000)
- Goncalves F, Figueiredo JL, Appl. Catal. B: Environ., 50(4), 271 (2004)
- Qi GS, Yang RT, J. Catal., 217, 438 (2003)
- Muniz J, Marban G, Fuertes AB, Appl. Catal. B: Environ., 23(1), 25 (1999)