Macromolecular Research, Vol.16, No.2, 113-119, February, 2008
Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries
E-mail:
A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.
- Bosman AW, Janssen HM, Meijer EW, Chem. Rev., 99(7), 1665 (1999)
- Grayson SK, Frechet JMJ, Chem. Rev., 101(12), 3819 (2001)
- Hudson SD, Jung HT, Percec V, Cho WD, Johansson G, Ungar G, Balagurusamy VS, Science, 278(5337), 449 (1997)
- Gehringer L, Bourgogne C, Guillon D, Donnio B, J. Am. Chem. Soc., 126(12), 3856 (2004)
- Fisher M, Vogtle F, Angew. Chem.-Int. Edit., 38, 884 (1999)
- Hirao A, Tsunoda Y, Matsuo A, Sugiyama K, Watanabe T, Macromol. Res., 14(3), 272 (2006)
- Park C, Lee IH, Lee S, Song Y, Rhue M, Kim C, Proc. Natl. Acad. Sci. USA, 103, 1199 (2006)
- Kamikawa Y, Kato T, Org. Lett., 8, 2463 (2006)
- Gehringer L, Guillon D, Donnio B, Macromolecules, 36(15), 5593 (2003)
- Kim KT, Lee IH, Park C, Song Y, Kim C, Macromol. Res., 12(5), 528 (2004)
- Song YM, Park CY, Kim CH, Macromol. Res., 14(2), 235 (2006)
- Dukeson DR, Ungar G, Balagurusamy VSK, Percec V, Johansson GA, Glodde M, J. Am. Chem. Soc., 125(51), 15974 (2003)
- Suarez M, Lehn JM, Zimmerman SC, Skoulios A, Heinrich B, J. Am. Chem. Soc., 120(37), 9526 (1998)
- Percec V, Cho WD, Ungar G, Yeardley DJP, J. Am. Chem. Soc., 123(7), 1302 (2001)
- Ungar G, Liu Y, Zeng X, Percec V, Cho WD, Science, 299, 1208 (2003)
- Zeng X, Ungar G, Liu Y, Percec V, Dulcey AE, Hobbs JK, Nature, 428, 157 (2004)
- Yeardley DJP, Ungar G, Percec V, Holerca MN, Johansson G, J. Am. Chem. Soc., 122(8), 1684 (2000)
- Percec V, Peterca M, Sienkowska MJ, Ilies MA, Aqad E, Smidrkal J, Heiney PA, J. Am. Chem. Soc., 128(10), 3324 (2006)
- Percec V, Dulcey AE, Peterca M, Adelman P, Samant R, Balagurusamy VSK, Heiney PA, J. Am. Chem. Soc., 129(18), 5992 (2007)
- Vanhest JC, Baars MW, Elissenroman C, Vangenderen MH, Meijer EW, Macromolecules, 28(19), 6689 (1995)
- Roman C, Fischer HR, Meijer EW, Macromolecules, 32(17), 5525 (1999)
- Schenning APHJ, Elissen-Roman C, Weener JW, Baars MWPL, van der Gaast SJ, Meijer EW, J. Am. Chem. Soc., 120(32), 8199 (1998)
- Iyer J, Hammond PT, Langmuir, 15(4), 1299 (1999)
- Iyer J, Fleming K, Hammond PT, Macromolecules, 31(25), 8757 (1998)
- Cameron JH, Facher A, Lattermann G, Diele S, Adv. Mater., 9(5), 398 (1997)
- Jayaraman M, Frechet JMJ, J. Am. Chem. Soc., 120(49), 12996 (1998)
- Cho BK, Chung YW, Bull. Korean Chem. Soc., 27, 29 (2006)
- Yoo YS, Choi JH, Song JH, Nam-Keun H, Zin WC, Park S, Chang TY, Lee M, J. Am. Chem. Soc., 126(20), 6294 (2004)
- Cho BK, Jain A, Nieberle J, Mahajan S, Wiesner U, Gruner SM, Turk S, Rader HJ, Macromolecules, 37(11), 4227 (2004)
- Loo YL, Register RA, Adamson DH, J. Polym. Sci. B: Polym. Phys., 38(19), 2564 (2000)
- Pavia D, Introduction to Spectroscopy, Thomson Learning (2001)
- Analysis of the SAXS pattern was performed on the basis of the following equation: q2/(2π)2 = h2/(asinγ)2.2hkcosγ/absin2 γ + k2/(bsinγ)2, where h and k are Miller indices of the scattering planes, a and b are unit cell basis vectors, and γ is the angle between a and b (0° < γ < 180°)
- Balsamo V, von Gyldenfeldt F, Stadler R, Macromolecules, 32(4), 1226 (1999)