화학공학소재연구정보센터
Energy & Fuels, Vol.12, No.2, 320-328, 1998
Relating feedstock composition to product slate and composition in catalytic cracking. 4. An extended pendant-core model for gasoline composition
The pendant-core concept has been used previously to predict product slates from catalytic cracking. In this concept, alkyl side chains and analogous moieties are defined as "pendants", which are attached to a cluster of aromatic and/or naphthenic rings which is referred to as the "core". This work extends the pendant-core concept via a model which correlates feed composition (19 main component types determined by mass spectroscopy) to nine product subclasses (both gasoline and non-gasoline) by adding product distribution functions. These product distribution functions depend upon the feed component class (saturates, aromatics, and sulfur compounds) and upon the core-pendant ratio. For example, the production of light gas and coke increases with the core-pendant ratio since the probability of coke formation increases with core size and the average pendant chain length decreases as the proportion of carbon in pendants decreases. Using these component distribution functions, and the mass spectroscopic analysis of feeds, one can calculate anticipated yields of nine product subclasses : light gas, C-3/C-4 gas, light cycle oils, heavy cycle oils, coke, and gasoline range : paraffins, olefins, aromatics, and naphthenes. The product distribution functions were developed from data on four feedstocks. For the four feedstocks used in the correlation, plus a fifth feedstock, the predicted product quantities are within 2 wt % of the experimental values. The present form of the model does not address effects of polar (acidic or basic) compounds in feeds on product slate.