화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.43, 12591-12598, 2007
Investigation of the phase Behavior of an embedded charge protein model through molecular simulation
The phase behavior of an embedded-charge model for lysozyme developed by Carlsson and co-workers (J. Phys. Chem. B 2001, 105, 9040) is investigated using grand canonical transition matrix Monte Carlo simulation. Within this model, protein-protein interactions are approximated through a combination of hardsphere repulsion, isotropic hydrophobic attraction, and screened electrostatic interactions through a series of embedded point charges located at the positions of charged amino acid groups within lysozyme. Liquid-liquid phase diagrams are constructed for a wide range of solution conditions and compared with experimental data. Our results indicate that the model is generally capable of describing qualitative trends in the evolution of protein phase behavior with variation of pH and ionic strength. From a quantitative perspective, model estimates for both the change in critical temperature with variation of the solution conditions and the critical concentration do not agree with experimental results. We find the width of model coexistence curves to be independent of solution conditions and narrow relative to experimentally obtained phase envelopes. Connections between the value of the second virial coefficient evaluated at the critical temperature and the location of the liquid-liquid phase envelope are also examined.