화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.47, 13451-13454, 2007
Inclusion kinetics of a nucleotide into a cyclodextrin cavity by means of ultrasonic relaxation
To examine a dynamic interaction between nucleotide and cyclic oligosaccharide, ultrasonic absorption measurements were carried out in aqueous solution containing beta-cyclodextrin (beta-CD) and adenosine 5'-monophosphate (AMP) in the frequency range of 0.8-95 MHz. A relaxational absorption was observed in the solution, although it was not found in the individual solution of beta-CD or AMP. Frorn the concentration dependences of AMP on the relaxation time and the maximum absorption per wavelength, the cause of the relaxation was attributed to a perturbation of a chemical equilibrium associated with a complex formation between beta-CD (host) and AMP (guest). The rate constants for the formation and breakup processes of the complex were determined. Also, a standard volume change of the reaction was obtained. From comparisons of the obtained rate and thermodynamic parameters with those for beta-CD and various guests, it has been concluded that the adenine moiety is included in the beta-CD cavity and that the hydrogen bonds may play a role in the complex formation.