Langmuir, Vol.23, No.23, 11540-11545, 2007
Self-organization of surfactant-metal-ion complex nanofibers on graphite surfaces and their application to fibrously concentrated platinum nanoparticle formation
We report the fabrication of self-organized surfactant nanofibers containing platinum ions on a highly oriented pyrolytic graphite (HOPG) surface from mixed solutions of hexadecyltrimethylammonium hydroxide (C16TAOH) and hydrogen hexachloroplatinate (IV) (H2PtCl6). The fibrous surfactant self-assembly was stable in air, even after being soaked in water, in contrast to surfactant hemicylindrical micelles, which are stable only at graphite/solution interfaces. The results show that the graphite surface served as an essential template for the specific formation of fibrous surfactant self-assemblies. In addition, when surfactant nanofibers containing metal ions were treated with hydrazine, platinum nanoparticles concentrated in the nanofibers formed on the HOPG surface. We also prepared surfactant nanofibers containing gold ions on HOPG surfaces and formed gold nanoparticles in the nanofibers.