화학공학소재연구정보센터
Langmuir, Vol.23, No.24, 12016-12023, 2007
Equilibrium domains on heterogeneously charged surfaces
Recent experiments have shown that salt solutions containing surfaces with two oppositely charged species show stable, possibly equilibrium, structures with finite domain sizes. The short-range interactions between the two species would normally result in phase separation that is driven by the line tension with macroscopically large domains of each species. In this paper, we show that, when at least one of the charged species is mobile, finite domains can occur in equilibrium. The domain size is determined by a competition of the electrostatic free energy that promotes charge mixing and small domains, with the line tension that promotes macroscopic phase separation. We calculate the equilibrium patch size as a function of the surface charge and the concentration of dissolved monovalent salts in the bulk phase. An important finding is the prediction of a first-order transition from finite patches to macroscopic phase separation of the two charge species as the salt concentration is increased.