화학공학소재연구정보센터
Electrochimica Acta, Vol.52, No.21, 6195-6205, 2007
Mechanism of hydrogen adsorption/ab sorption at thin Pd layers on Au(111)
Hydrogen adsorption and absorption at thin palladium deposits of 0.8-10 monolayers (ML) on Au(111) was studied in 0.1 M H2SO4 and HClO4 using cyclic voltammetry, ac voltammetry, and impedance spectroscopy in the absence and in the presence of poison, crystal violet. Hydrogen adsorption on palladium is more reversible in sulfuric acid than in perchloric acid but it occurs at potentials 30 mV more positive in latter. The charge-transfer resistance exhibits a minimum at similar to 0.27 V versus RHE and decreases with increasing in Pd deposit thickness in both acids. Adsorption capacitance at 0.8 ML Pd reaches maximum at the same potential. At other deposits the pseudo-capacitance starts to increase at lower overpotentials indicating the beginning of absorption, even at 2 ML Pd. The double layer capacitance is similar for all the deposits in sulfuric acid and it has a sharp maximum at similar to 0.27 V versus RHE. In perchloric acid a broad maximum is observed. Crystal violet inhibits hydrogen adsorption but makes hydrogen absorption more reversible. The results suggest a fast direct hydrogen absorption mechanism that proceeds in parallel with slower hydrogen adsorption and indirect absorption. (c) 2007 Elsevier Ltd. All rights reserved.