화학공학소재연구정보센터
Energy, Vol.32, No.8, 1471-1477, 2007
Reducing energy-related CO2 emissions using accelerated weathering of limestone
The use and impacts of accelerated weathering of limestone (AWL; reaction: CO2 + H2O + CaCO3 -> Ca2+ + 2(HCO3-) is explored as a CO2 capture and sequestration method. It is shown that significant limestone resources are relatively close to a majority of CO2-emitting power plants along the coastal US, a favored siting location for AWL. Waste fines, representing more than 20% of current US crushed limestone production (> 10(9) tonnes/yr), could provide an inexpensive or free source of AWL carbonate. With limestone transportation then as the dominant cost variable, CO2 mitigation costs of $3-$4/tonne appear to be possible in certain locations. Perhaps 10-20% of US point-source CO2 emissions could be mitigated in this fashion. It is experimentally shown that CO2 sequestration rates of 10(-6) to 10(-5) moles/sec per m(2) of limestone surface area are achievable, with reaction densities on the order of 10(-2) tonnes CO2 m(-3) day(-1), highly dependent on limestone particle size, solution turbulence and flow, and CO2 concentration. Modeling shows that AWL would allow carbon storage in the ocean with significantly reduced impacts to seawater pH relative to direct CO2 disposal into the atmosphere or sea. The addition of AWL-derived alkalinity to the ocean may itself be beneficial for marine biota. (c) 2006 Elsevier Ltd. All rights reserved.