화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.4, 431-438, July, 1994
Aluminum-Porphyrin 촉매계를 이용한 Propylene Oxide의 배위중합: 중합속도론과 메카니즘
Coordination Polymerization of Propylene Oxide over Aluminum Prophyrin Catalyst System
초록
Aluminum porphyrin촉매를 이용한 propylene oxide의 배위중합 메카니즘을 이해하기 위하여 초기 단량체 농도, 촉매농도, 중합온도 등을 변수로 중합 반응속도를 측정하였다. 중합반응 속도는 단량체 및 촉매농도의 일차식에 비례하는 경향을 보였으며 성장단계의 활성화 에너지는 9.7∼11.1 kcal/mole이 얻어졌다. 또한 비대칭 고리형 단량체인 propylene oxide는 methylene-ox-ygen 결합에서 활성점의 친핵성공격에 의해 개환되어 head to tail의 배열을 갖는 고분자가 합성되는 것을 19F-NMR실험을 통하여 확인하였다. 속도론 연구 및 Aluminum-27 NMR 실험결과를 종합할때 중합경로는 우선, Aluminum-porphyrin의 제6배위자리에 에폭시단량체가 결합하면 이는 음이온성 활성체의 탈배위를 유도하여 배위결합으로 여기된 단량체를 친핵성 치환반응으로 개환한 후 배위상태로 환원되는 것으로 보여진다.
The kinetics of polymerization of propylene oxide by using aluminum porphyrin initiator system was investigated to elucidate the coordination polymerization mechanism. The rate of polymerization is first order with respect to monomer and initiator concentrations with an activation energy of 9.7∼11.1 kcal/mole. Also, the polymerization proceeded through the exclusive cleavage of methylene-oxygen bond via a nucleophilic attack of growing species, yielding to head to tail configuration with asymmetric monomers according to the 19FNMR experiment. These observations in conjunction with 27Al-NMR studies suggest that the polymerization route may be first, association of epoxide monomer to the sixth coordinate site of porphyrinatoaluminum followed by the generation of anionic growing species to maintain the penta-coordinated square pyramidal arrangements. Subsequently, this anionic active species open the coordinated epoxide rings by nucleophilic substitution maintaining penna-coordinated state.
  1. Vandenburg EJ, J. Polym. Sci., 47, 486 (1960) 
  2. Price CC, Osgar M, J. Am. Chem. Soc., 78, 1690 (1956)
  3. Furukawa J, Saegusa T, "Polymerization of Aldehydes and Oxides," Chap. 3, Wiley-Interscience, New York (1963)
  4. Bruce JM, Hurst AJ, Polymer, 7, 1 (1966)
  5. Hirano T, Makromol. Chem., 197, 3237 (1976) 
  6. Kuran W, Pasynkiewicz S, Skupinkusa J, Makromol. Chem., 177, 11 (1976) 
  7. Vandenburg EJ, J. Polym. Sci. A: Polym. Chem., 7, 525 (1969) 
  8. Inoue S, Aida T, "Ring Opening Polymerization," ed. by K.I. Ivin and T. Saegusa, Vol. 1, Chap. 4, Wiley-Interscience, New York (1984)
  9. Aida T, Inoue S, Macromolecules, 14, 1162 (1982) 
  10. Yoo Y, Ph.D. Dissertation, VPI&SU, Blacksburg (1988)
  11. Berlzin BD, "Coordination Compounds of Porphyrins and Phthalocyanines, Chaps. 1-5, John Wiley & Sons, New York (1981)
  12. DeSimone JM, Hellstern AM, Yoo Y, Riffle JS, McGrath JE, Polym. Prepr., 30, 243 (1989)
  13. McGrath JE, "Ring Opening Polymerization: Kinetics, Synthesis and Mechanism," (ACS Symposium Series), ed. by J.E. McGrath, p. 286 (1985)
  14. Parker RE, Chem. Rev., 59, 758 (1959)
  15. Delpeuch JJ, "NMR of Newly Accessible Neuclei," ed. by P. Laxzlo, Vol. 2, Chap. 6, Academic Press, New York (1983)
  16. Benn R, Rufinska A, Lehmkuhl H, Janssen E, Kruger C, Angew. Chem.-Int. Edit., 22, 779 (1983) 
  17. Akitt JW, Mann BE, J. Magn. Res. Comm., 44, 584 (1981)