International Journal of Control, Vol.80, No.10, 1576-1594, 2007
Adaptive fault-tolerant control of non-linear systems: an improved CMAC-based fault learning approach
The conventional cerebellar model articulation controllers (CMAC) learning scheme equally distributes the correcting errors into all addressed hypercubes, regardless of the credibility of those hypercubes. This paper presents the adaptive fault-tolerant control scheme of non-linear systems using a fuzzy credit assignment CMAC neural network online fault learning approach. The credit assignment concept is introduced into fuzzy CMAC weight adjusting to use the learned times of addressed hypercubes as the credibility of CMAC. The correcting errors are proportional to the inversion of learned times of addressed hypercubes. With this fault learning model, the learning speed of fault can be improved. After the unknown fault is estimated, online, by using the fuzzy credit assignment CMAC, the effective control law reconfiguration strategy based on the sliding mode control technique is used to compensate for the effect of the fault. The proposed fault-tolerant controller adjusts its control signal by adding a corrective sliding mode control signal to con. ne the system performance within a boundary layer. The numerical simulations demonstrate the effectiveness of the proposed CMAC algorithm and fault-tolerant controller.