International Journal of Control, Vol.80, No.10, 1676-1689, 2007
Adaptive sampled-data based linear quadratic optimal control of stochastic systems
The problem of sampled-data (SD) based adaptive linear quadratic (LQ) optimal control is considered for linear stochastic continuous-time systems with unknown parameters and disturbances. To overcome the difficulties caused by the unknown parameters and incompleteness of the state information, and to probe into the influence of sample size on system performance, a cost-biased parameter estimator and an adaptive control design method are presented. Under the assumption that the unknown parameter belongs to a known finite set, some sufficient conditions ensuring the convergence of the parameter estimate are obtained. It is shown that when the sample step size is small, the SD-based adaptive control is LQ optimal for the corresponding discretized system, and sub-optimal compared with that of the case where the parameter is known and the information is complete.