화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.105, No.2, 647-655, 2007
Composites of polymeric gels and magnetic nanoparticles: Preparation and drug release behavior
The article is concerned with the preparation of polymer-iron oxide nanocomposites and the study as drug-delivery matrices under the influence of applied magnetic field. Biocompatible materials were prepared by incorporating an aqueous ferrofluid in poly(vinyl alcohol) and scleroglucan (SCL) hydrogels, loaded with theophylline as model drug for release studies. The in vitro release profile was obtained using a flat Franz cell and the kinetic parameters were derived applying a semiempirical power law. A magnetic characterization of nanoparticles contained in the ferrofluid was performed by obtaining the magnetization curve. For both systems, the observed drug release profiles decreased when a uniform external magnetic field is applied suggesting they can be used as environmental responsive matrices for biomedical applications. Dynamic rheological measurements show that a higher storage modulus and a more compact structure are obtained by incorporating the ferrofluid into the hydrogels. These rheological results and environmental electron scanning microscopy micrographs point to an understanding of release behavior once the magnetic field is applied. (c) 2007 Wiley Periodicals, Inc.