화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.4, 536-542, July, 1994
열방성 액정공중합체의 물성에 미치는 화학구조의 영향
Effects of Chemical Structure on Properties of Thermotropic Liquid Crystalline Copolymers
초록
단량체 p-acetoxybenzoic acid (p-ABA), terephthalic acid (TPA), low inherent viscosity (IV) poly(ethylene terephthalate) (PET) 및 2,7-diacetoxy naphthalene (2,7-DAN)을 사용하여 여러 조성의 열방성 액정고분자를 제조하여 화학조성이 그 성질에 미치는 영향을 조사하였다. IV가 1.6이상이고 210∼290℃에서 용융가능한 열방성 액정 공중합체를 얻었다. 얻어진 공중합체는 230℃에서부터 최소 320℃까지의 넓은 온도범위까지 nematic mesophase를 보였다. 유리전이온도 및 저장탄성율이 급격히 감소되는 온도는 mesogenic 단위 및 2,7-DAN 함량의 증가에 따라 현저하게 증가하였다.
The thermotropic liquid crystalline copolymers were prepared by melt polymerization using p-acetoxybenzoic acid (p-ABA) and terephthalic acid (TPA) as mesogenic monomers, poly(ethylene terephthalate) (PET) to give a flexible linkage, and 2,7-diacetoxy naphthalene (2,7-DAN) as a dissymmetrical monomer. The composition of these monomers was varied as a means of manipulating thermal and dynamic mechanical properties. The polymers with inherent viscosities near or above 1.6 that were melt processible in the temperature range of 210 ∼ 290℃ were obtained. Highly anisotropic melts were observed indicating the presence of a nematic mesophase. The glass transition temperature increased with increasing contents of mesogenic units and 2,7-DAN. The temperatures at which the storage modulus drastically dropped off increase with increasing mesogenic units and 2,7-DAN.
  1. Kim HD, Paul DR, J. Appl. Polym. Sci., 40, 155 (1990) 
  2. Kim HD, Paul DR, J. Appl. Polym. Sci., 41, 1843 (1990) 
  3. Kim HD, Kang SK, J. Korean Fiber Soc., 27(8), 612 (1990)
  4. Kim EY, Kim DL, Kim HD, J. Korean Fiber Soc., 27(4), 261 (1990)
  5. Cogswell FN, "Recent Advances in Liquid Crystalline Polymer," L.L. Chapoy, Ed., pp. 165-175, Elsevier, London (1985)
  6. Antoun S, Lenz RW, Jin JI, J. Polym. Sci. A: Polym. Chem., 19, 1901 (1981)
  7. Bickel A, Shaw MT, Samulski ET, J. Rheol., 28, 647 (1984) 
  8. Hamb FL, J. Polym. Sci. A: Polym. Chem., 10, 3217 (1972) 
  9. Hamb FL, U.S. Patent, 3,772,405 (1973)
  10. Jackson WJ, Kuhfuss HF, J. Polym. Sci. A: Polym. Chem., 14, 2043 (1976)
  11. Benson RS, Lewis DN, Polym. Commun., 28, 289 (1987)
  12. Economy J, Storm RS, Matkovich VI, Cottis SG, Mowak BE, J. Polym. Sci. A: Polym. Chem., 14, 2207 (1976)