Journal of Bioscience and Bioengineering, Vol.103, No.4, 318-324, 2007
Development of stable flocculent Saccharomyces cerevisiae strain for continuous aspergillus niger beta-galactosidase production
A flocculent Saccharomyces cerevisiae strain was engineered to stably secrete Aspergillus niger beta-galactosidase in a continuous high-cell-density bioreactor. The delta-sequences from the yeast retrotransposon Ty1 were used as target sites for the integration of the beta-galactosidase expression cassette. High-copy-number transformants were successfully obtained using the delta-integration system together with the dominant selection antibiotic, G418. The integration of multiple copies was confirmed by genomic Southern blot analysis. Integrants with the highest beta-galactosidase levels (approximately eight gene copies) had similar beta-galactosidase activities as a recombinant strain carrying the beta-galactosidase expression cassette in a YEp-based vector. The beta-galactosidase expression cassettes integrated into the yeast genome were stably maintained after eight sequential batch cultures in a nonselective medium. In continuous high-cell-density culture under the same operating conditions, the integrant strain was more stable than the plasmid-carrying strain. To our knowledge, this is the first study of multicopy delta-integrant stability in a continuous bioreactor operating at different dilution rates.
Keywords:genetic stability of delta-integrating systems;continuous high-cell-density culture;Aspergillus niger beta-galactosidase production;recombinant Saccharomyces cerevisiae;yeast flocculation