화학공학소재연구정보센터
Journal of Materials Science, Vol.42, No.19, 8035-8039, 2007
Modeling of capillary flow in shaped polymer fiber bundles
Moisture transporting in fiber assembly is one of the critical factors affecting physiological comfort. In this study, we investigated at the capillary flow in complex geometries representative of the void spaces formed between fibers in shaped polymer fiber bundles. Dynamic process of liquid creeping in capillary is analyzed based on Reed and Wilson vertical wicking model. Critical equivalent radius values of capillary tubes in polymer fiber assembly are discussed here. In the cases of round, criss-cross and triangle shape fiber, Reed and Wilson model is integrated with shaped fiber bundle mathematical simulation model (MFB) to calculate the dynamic curve of liquid arising. Instantaneous wicking velocity, wicking height, wicking flux, and characters are compared to figure out that the wicking effect of shaped polymer fiber is quite better than normal round one.