Journal of Materials Science, Vol.42, No.21, 8853-8863, 2007
A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues
In this paper a generalized anisotropic hyperelastic constitutive model for fiber-reinforced materials is proposed. Collagen fiber alignment in biological tissues is taken into account by means of structural tensors, where orthotropic and transversely isotropic material symmetries appear as special cases. The model is capable to describe the anisotropic stress response of soft tissues at large strains and is applied for example to different types of arteries. The proposed strain energy function is polyconvex and coercive. This guarantees the existence of a global minimizer of the total elastic energy, which is important in the context of a boundary value problem.