화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.28, 6420-6424, 2007
Agostic interaction in the methylidene metal dihydride complexes H2MCH2 (M = Y, Zr, Nb, Mo, Ru, Th, or U)
Multiconfigurational quantum chemical methods (complete active space self-consistent field (CASSCF)/second-order perturbation theory (CASPT2)) have been used to study the agostic interaction between the metal atom and H(C) in the methylidene metal dihydride complexes H2MCH2, where M is a second row transition metal or the actinide atoms Th or U. The geometry of some of these complexes is highly irregular due to the formation of a three center bond CH center dot center dot center dot M, where the electrons in the CH bond are delocalized onto empty or half empty orbitals of d- or f-type on the metal. No agostic interaction is expected when M = Y, where only a single bond with methylene can be formed, or when M = Ru, because of the lack of empty electron accepting metal valence orbitals. The largest agostic interaction is found in the Zr and U complexes.