화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.26, 7577-7583, 2007
Temperature-dependent hydration at micellar surface: Activation energy barrier crossing model revisited
In recent years, the validity of the activation energy barrier crossing model at the micellar surface brings notable controversy (Sen, P.; Mukherjee, S.; Halder, A.; Bhattacharyya, K. Chem. Phys. Lett. 2004, 385, 357-361. Kumbhakar, M.; Goel, T.; Mukherjee, T.; Pal, H. J. Phys. Chem. B 2004, 108, 19246-19254.) in the literature. In order to check the validity of the model by time-resolved solvation of a probe fluorophore, a wider range of temperature must be considered. At the same time, spatial heterogeneity (solubilization) of the probe and structural perturbation of the host micelle should carefully be avoided, which was not strictly maintained in the earlier studies. We report here the solvation dynamics of 4-(dicyanomethylene)-2-methyl-6(p-dimethylamino-styryl) 4H-pyran (DCM) in the SDS micelle at 298, 323, and 348 K. The probe DCM is completely insoluble in bulk water in this wide range of temperature. The size of the micelle at different temperatures using the dynamic light scattering (DLS) technique is found to have insignificant change. The hydration number of the micelle, determined by sound velocity measurements, decreases with increasing temperature. Time-resolved fluorescence anisotropy reveals the retention of the probe in the micellar interface within the temperature range. The average solvation time decreases with increasing temperature. The result of the solvation study has been analyzed in the light of energetics of bound to free water conversion at a constant size and decreasing hydration number at the micellar surface. The solvation process at the micellar surface has been found to be the activation energy barrier crossing type, in which interfacially bound type water molecules get converted into free type molecules. We have calculated E-a to be 3.5 kcal mol(-1), which is in good agreement with that obtained by molecular dynamics simulation studies.