Journal of Physical Chemistry B, Vol.111, No.33, 9886-9896, 2007
Molecular aggregates in aqueous solutions of bile acid salts. Molecular dynamics simulation study
The aggregation behavior of two bile acid salts (i.e., sodium cholate and sodium deoxycholate) has been studied in their aqueous solutions of three different concentrations (i.e., 30, 90,and 300 mM) by means of molecular dynamics computer simulations. To let the systems reach thermodynamic equilibrium, rather long simulations have been performed: the equilibration period, lasting for 20-50 ns, has been followed by a 20 ns long production phase, during which the average size of the bile aggregates (regarded to be the slowest varying observable) has already fluctuated around a constant value. The production phase of the runs has been about an order of magnitude longer than the average lifetime of both the monomeric bile ions and the bonds that link two neighboring bile ions together to be part of the same aggregate. This has allowed the bile ions belonging to various aggregates to be in a dynamic equilibrium with the isolated monomers. The observed aggregation behavior of the studied bile ions has been found to be in good qualitative agreement with experimental findings. The analysis of the results has revealed that, due to their molecular structure, which is markedly different from that of the ordinary aliphatic surfactants, the bile ions form rather different aggregates than the usual spherical micelles. In the lowest concentration solution studied, the bile ions only form small oligomers. In the case of deoxycholate, these oligomers, such as the ordinary micelles, are kept together by hydrophobic interactions, whereas in the sodium cholate system, small hydrogen-bonded aggregates (mostly dimers) are also present. In the highest concentration systems, the bile ions form large secondary micelles, which are kept together both by hydrophobic interactions and by hydrogen bonds. Namely, in these secondary micelles, small hydrophobic primary micelles are linked together via the formation of hydrogen bonds between their hydrophilic outer surfaces.