화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.30, No.9, 1203-1211, 2007
Nonlinear real-time process monitoring and fault diagnosis based on principal component analysis and kernel fisher discriminant analysis
The aim of this paper is to propose a novel real-time process monitoring and fault diagnosis method based on the principal component analysis (PCA) and kernel Fisher discriminant analysis (KFDA). There is a need to develop this method in order to overcome the inherent limitations of the current kernel FDA method. The idea of the method is to initially reduce dimensionality using PCA and then to map the score data in the reduced original space to the high-dimensional feature space via a nonlinear kernel function. Following this, the optimal Fisher feature vector and discriminant vector are extracted to perform process monitoring. If faults occur, the method uses the degree of similarity between the optimal discriminant vector presented and the optimal discriminant vector of the faults in the historical dataset to perform a diagnosis. The proposed method can effectively capture nonlinear relationships in process variables. In comparison with kernel FDA, the PCA plus kernel FDA method is more efficient and has a more rapid response when used to undertake online monitoring and fault diagnosis. In this study, the method is evaluated by applying it to the fluid catalytic cracking unit (FCCU) process. As a consequence, its effectiveness is demonstrated.