Biochemical and Biophysical Research Communications, Vol.360, No.1, 7-13, 2007
Targeted inhibition of glucuronidation markedly improves drug efficacy in mice - A model
Finding UDP-glucuronosyltransferases (UGT) require protein kinase C-mediated phosphorylation is important information that allows manipulation of this critical system. UGTs glucuronidate numerous aromatic-like chemicals derived from metabolites, diet, environment and, inadvertently, therapeutics to reduce toxicities. As UGTs are inactivated by downregulating PKCs with reversibly-acting dietary curcumin, we determined the impact of gastro-intestinal glucuronidation on free-drug uptake and efficacy using immunosuppressant, mycophenolic acid (MPA), in mice. Expressed in COS-1 cells, mouse GI-distributed Ugtlal glucuronidates curcumin and MPA and undergoes irreversibly and reversibly dephosphorylation by PKC-specific inhibitor calphostin-C and general-kinase inhibitor curcumin, respectively, with parallel effects on activity. Moreover, oral curcumin-administration to mice reversibly inhibited glucuronidation in GI-tissues. Finally, successive oral administration of curcumin and MPA to antigen-treated mice increased serum free MPA and immunosuppression up to 9-fold. Results indicate targeted inhibition of GI glucuronidation in mice markedly improved free-chemical uptake and efficacy using MPA as a model. (c) Published by Elsevier Inc.
Keywords:UDP-glucuronosyltraiisferase;phosphorylation;proof of principle;immunosupression;mycophenolic acid;CTL assay;curcumin;calphostin-C;PKC;drug efficacy