Biomacromolecules, Vol.8, No.8, 2564-2570, 2007
Stable biopassive insulation synthesized by initiated chemical vapor deposition of poly(1,3,5-trivinyltrimethylcyclotrisiloxane)
The permanent implantation of electronic probes capable of recording neural activity patterns requires long-term electrical insulation of these devices by biopassive coatings. In this work, the material properties and neural cell compatibility of a novel polymeric material, poly(trivinyltrimethylcyclotrisiloxane) (poly(V3D3)), are demonstrated to be suitable for application as permanently bioimplanted electrically insulating films. The poly(V3D3) polymeric films are synthesized by initiated chemical vapor deposition (iCVD), allowing for conformal and flexible encapsulation of fine wires. The poly(V3D3) also exhibits high adhesive strength to silicon substrates, a common material of manufacture for neural probes. The poly(V3D3) films were found to be insoluble in both polar and nonpolar solvents, consistent with their highly cross-linked structure. The films are pinhole-free and extremely smooth, having a root-mean-square (rms) roughness of 0.4 nm. The material possesses a bulk resistivity of 4 x 1015 Ohm-cm exceeding that of Parylene-C, the material currently used to insulate neurally implanted devices. The iCVD poly(V3D3) films are hydrolytically stable and are demonstrated to maintain their electrical properties under physiological soak conditions, and constant electrical bias, for more than 2 years. In addition, biocompatibility studies with PC 12 neurons demonstrate that this material is noncytotoxic and does not influence cell proliferation.