화학공학소재연구정보센터
Biomacromolecules, Vol.8, No.10, 3184-3192, 2007
Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability
A double hydrophilic ABC triblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(N-isopropylacrylamide) (PDEA-b-PDMA-b-PNIPAM), containing the well-known pH-responsive PDEA block and thermoresponsive PNIPAM block, was synthesized by atom transfer radical polymerization via sequential monomer addition using ethyl 2-chloropropionate as the initiator. The obtained triblock copolymer exhibits interesting "schizophrenic" micellization behavior in aqueous solution, and supramolecularly self-assembles into three-layer "onion-like" PNIPAM-core micelles at acidic pH's and elevated temperatures and PDEA-core micelles with "inverted" structures at alkaline pH's and room temperature. In both cases dynamic laser light scattering (LLS) and optical transmittance reveal the presence of near-monodisperse micelles, and the micelle formation/inversion process is fully reversible. Novel shell cross-linked (SCL) micelles with pH-responsive PDEA cores and thermoresponsive PNIPAM coronas were then facilely fabricated from the PDEA-b-PDMA-b-PNIPAM triblock copolymer by cross-linking the PDMA inner shells with 1,2-bis(2-iodoethoxy)ethane. The reversible pH-dependent swelling/shrinking of PDEA cores and thermosensitive collapse/aggregation of PNIPAM coronas of the obtained SCL micelles; were investigated in detail by dynamic LLS, optical transmittance, and transmission electron microscopy. As the structurally stable SCL micelles possess pH-controllable core swellability and thermo-tunable corona permeability, the release profile of a model hydrophobic drug, dipyridamole, initially loaded within the hydrophobic PDEA core, can be dually controlled by both the solution pH and the temperature. This represents the first report of SCL micelles with multiresponsive cores and coronas, which may find practical applications in fields such as drug delivery and smart release.