Combustion and Flame, Vol.151, No.1-2, 347-365, 2007
An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization
Two premixed laminar pyrrole/oxygen/argon flames at 3.33 kPa (25 Torr) with equivalence ratios of 0.55 (C/O/N = 1:5.19:0.25) and 1.84 (C/O/N = 1: 1.56:0.25) have been investigated using tunable synchrotron photoionization and molecular-beam mass spectrometry techniques. All observed flame species, including some nitrogen-containing intermediates, have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of species including reactants, intermediates, and products have been determined by scanning burner position at some selected photon energies near ionization thresholds, and flame temperature has been measured by a Pt/Pt-13% Rh thermocouple. The results indicate that N-2, NO, and NO2 are the major nitrogenous products, while hydrogen cyanide, isocyanic acid, and 2-propenenitrile are the most important nitrogen-containing intermediates in pyrrole flames. Radicals such as methyl, propargyl, allyl, cyanomethyl, n-propyl, isobutyl, cyclopentadienyl, phenyl, cyclohexyl, phenoxy, and 4-methylbenzyl are observed as well. Moreover, ethenol and methylacrylonitrile are also detected. Reaction pathways involving the major species are proposed. The new results will be useful in developing a kinetic model of nitrogenous compound combustion. (c) 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Keywords:pyrrole;premixed flame;tunable VUV photoionization;molecular-beam mass spectrometry;nitrogen-containing;intermediates