화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.1, 104-116, January, 1995
Amino-Silane Coupling Agent를 이용한 Fiber/Epoxy의 Single Fiber Composites(SFC) 시험법을 통한 계면전단강도의 증가에 관한 연구
Improvements of Interfacial Shear Strength in Single Basalt Fiber Reinforced Epoxy Composites Using Amino-Silane Coupling Agent
초록
Basalt fiber/epoxy composite에서 amino-silane coupling agent (n-(2-aminoethyl-3-aminopropyl)trimethoxysilane)을 이용한 효과를 알기 위하여 son히e fiber composite(SFC)시편을 사용하여 계면전단강도를 측정하여 조사하였다. Silane coupling agent의 효과를 최적화하기 위해 실험의 처리조건들을 표준화하였다. 섬유와 수지간의 계면전단강도가 상온에서는 약 14%의 증가를 보였으며, 끓는 물에 1시간 담근 후에 65%의 큰 증가치를 보였다. 이는 첫째로 basalt fiber와 silane coupling agent간의 계면에서의 화학적 결합인 siloxane bonding에 기인할 수 있으며, 둘째로 또 다른 계면인 silane couping agent와 에폭시 수지간의 화학적인 결합에 기인할 것이다. Acoustic emission(AE) 시험법을 통한 두 다른 직경의 basalt fibers와 matrix간의 잘 분리된 분포로 부터 AE event와 fiber break 간의 일-대-일 대응을 구할 수 있었으며, 또한 이 AH 시험법은 에폭시 수지로 부터 발생하는 낮은 영역의 AE events를 분리시킴으로서 SFC 시험법보다 계면전단강도를 보다 쉽게 구할 수 있는 또 다른 방법이 될 수 있을 것이다.
Silane coupling agent effects in basalt fiber-epoxy systems were investigated through measurement of the interfacial shear strength (IFSS) in single-fiber composite (SFC) specimens using amino-silane (n-(2-aminoethyl-3-aminopropyl)trimethoxysilane). Optimal conditions for silane treatment were standardized. Improvement in IFSS showed 14% under dry condition, whereas improvement showed 65% under wet condition after 1 hour boiling in water. Monitoring of acoustic emission (AE) during straining of SFC specimens established one-to-one correspondence between the number of AE events and fiber breaks, based on the well-separated AE distribution for fiber breakage and matrix cracking. In addition, AE method may be another technique that can measure interfacial shear strength more easily than SFC method by filtering-out AE event coming from epoxy matrix cracking.
  1. Park JM, Subramanian RV, J. Adhes. Sci. Technol., 5(6), 459 (1991)
  2. Park JM, Subramanian RV, Bayoumi AE, J. Adhes. Sci. Technol., 8(2), 133 (1994)
  3. Plueddemann EP, "Silane Coupling Agent," Plenum Press, New York (1982)
  4. Chiang CH, Ishida H, Keonig JL, J. Colloid Interface Sci., 74, 396 (1980) 
  5. Koenig JL, Chiang CH, "The Role of the Polymeric Matrix in the Processing and Structural Properties of Composite Materials," eds. by J.C. Seferies and L. Nicolais, p. 503, Plenum Press, New York (1983)
  6. Sanadi AR, Piggott MR, J. Mater. Sci., 20, 431 (1985) 
  7. Bascom WD, Proceedings of the 6th International Conf. of Composite Materials (ICCM), 5, 424 (1987)
  8. Netravali AN, Stone D, Ruoff S, Topoleski TTT, Compos. Sci. Technol., 34, 289 (1989) 
  9. Park JM, Chong EM, Shin WG, Lee JO, Park TW, Polym.(Korea), 18(5), 783 (1994)
  10. Kelly A, Tyson NR, J. Mech. Phys. Solids, 13, 329 (1965) 
  11. Subramanian RV, Crasto AS, Polym. Compos., 7, 201 (1986) 
  12. Crasto AS, Own SH, Subramanian RV, Polym. Compos., 9, 78 (1988) 
  13. Wimolkiatisak AS, Bell JP, Polym. Compos., 10, 162 (1989) 
  14. Henstenburg RB, Phoenix SL, Polym. Compos., 6, 389 (1989) 
  15. Netravali AN, Henstenburg RB, Phoenix SL, Schwartz P, Polym. Compos., 4, 226 (1989) 
  16. Curtin WA, J. Mater. Sci., 26, 5239 (1991) 
  17. Subramanian RV, "Handbook of Reinforcements for Plastics," eds. by J. Milewski and H. Katz, p. 287, van Nostrand Reinhold, New York (1987)
  18. Jung TJ, Subramanian RV, Manoranjan VS, J. Mater. Sci., 28, 4489 (1993) 
  19. Kline RA, "Acoustic Emission," ed. by J.R. Matthews, p. 112, Gordon and Breach Sci. Publishers, New York (1983)