Journal of Colloid and Interface Science, Vol.315, No.1, 230-236, 2007
Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2
A new approach is presented for preparing biomorphological mesoporous TiO2 templated by mimicking bamboo inner shell membrane via supercritical CO2 (SCCO2) transportation through titanium tetrabutyloxide (TTBO). The analysis of wide-angle X-ray powder diffraction (XRD) showed the prepared TiO2 in phase of anatase, and the small-angle XRD revealed the presence of mesopores without periodicity. The product exhibited the shape of crinkled films and extended in two dimensions up to centimeters. The electron microscopic observation showed that the TiO2 films were around 200 nm in thickness, and across the films there were numerous round or ellipse-shaped mesopores, being 10-50 nm in diameter, which were formed by the close packing of TiO2 particles. High-resolution transmission electron microscope (HRTEM) displayed that the single TiO2 particle size was about 12.5 nm. The UV-vis absorption spectrum was transparent in the wavelength of 320-350 nm for suspensions of the prepared mesoporous TiO2 in ethanol at the concentration of 5.0 mg/l. The mesoporous TiO2 prepared with the aid of SCCO2 exhibited an obvious blue shift compared with the TiO2 prepared by sol-gel infiltration. The possible mechanism for the formation of the mesoporous TiO2 is summarized into a biomimetic mineralization pathway. First, TTBO was transported to the membrane surface via SCCO2, and then condensed. Hydrolysis reactions between the functional groups of organic membrane and TTBO took place to form the nuclear TiO2, and the TiO2 seeds grew around the organic membrane into TiO2 mesoporous materials. The approach provides a low-cost and efficient route for the production of ceramics nanomaterials with unique structural features, which may have potential application in designing UV-selective shielding devices [S. Zhao, X.H. Wang, S.B. Xin, Q. Jiang, X.P. Liang, Rare Metal Mater. Eng. 35 (2006) 508-510]. (C) 2007 Elsevier Inc. All rights reserved.