Polymer(Korea), Vol.19, No.2, 170-178, March, 1995
스티렌 조성에 따른 SMC용 불포화폴리에스테르 수지의 경화거동과 물성에 관한 연구
Curing Behaviors and Mechanical Properties of Styrene/ Unsaturated Polyester System for Sheet Molding Compound
초록
본 연구에서는 불포화폴리에스터와 스티렌의 이중결합 몰비에 따른 경화거동, 경화동력학, 기계적성질 등을 실험하였다. 경화동력학은 Lam 등에 의해 제안된 경화동력학 모델을 이용하였고, 경화거동은 microgel reaction mechanism을 이용하여 설명하였다. 스티렌 모노머분율의 증가는 최종전화율을 증가시키나 등온 thermogram의 정점에서의 전화율은 감소시켰다. 본 연구에서 사용한 system의 경화 반응차수는 약 1.14이었으며 다른 문헌에서 보고된 결과와 일치하였다. 또한 활성화에너지값은 68.9 kJ/mol이었다. 스티렌 분율의 증가는 밀도, 경도, 굴곡강도, 굴곡탄성율을 감소시켰으나 충격강도는 거의 영향을 받지않았다. 압축성형시간이 증가함에 따라 굴곡강도, 굴곡탄성율은 증가하였으며 밀도는 감소하였다. 경도는 압축성형시간에 따라 거의 변화가 없었다.
In this study, the effects of double bond mole ratio of unsaturated polyester and styrene on the curing behaviors and mechanical properties were investigated. An improved kinetic model proposed by Lam et al., and the microgel reaction mechanism were used to characterize the system. It was found that the final conversion increased with increasing the styrene monomer fraction. On the other hand, the conversion at the peak of DSC thermogram appeared to decrease with increasing the styrene monomer fraction. The reaction order of the system and the activation energy were calculated to be 1.14 and 68.9 kJ/mol, respectively. The hardness, density, flexural strength and flexural modulus decreased with increasing the styrene monomer fraction, but impact strength was independent of the styrene monomer fraction. The flexural strength and flexural modulus increased with increasing curing time but density decreased. The hardness was found to be independent of curing time.
- Ulrich GR, "Reaction Polymers," Hanser Publishers, Oxford University Press, N.Y. (1991)
- Hori K, Mita I, Kambe H, J. Polym. Sci. A: Polym. Chem., 8, 2839 (1970)
- Kamal MR, Sluror S, Ryan M, SPE ANTEC Tech. Papers, 19, 187 (1973)
- Kubota H, J. Appl. Polym. Sci., 19, 2279 (1975)
- Pusatcioglu SY, Fricke AL, Hassler JC, J. Appl. Polym. Sci., 24, 937 (1779)
- Huang YJ, Chen CJ, J. Appl. Polym. Sci., 46, 1573 (1992)
- Lam PWK, Plaumann HP, Tran T, J. Appl. Polym. Sci., 41, 3043 (1990)
- Mallick PK, Raghupathi N, Polym. Eng. Sci., 19, 774 (1979)
- Kroekel CH, Bartkus EJ, 23rd Annual Technical Conference SPI, 18-E (1969)
- Walker AC, SPE Tech. Paper, 17, 454 (1974)
- Pattison VA, Hindersinn RR, Schwaltz WT, SPE J., 19, 553 (1973)
- Pattison VA, Hindersinn RR, Schwaltz WT, J. Appl. Polym. Sci., 19, 3045 (1975)
- Siegmann A, Narkis M, Dibenedetto AT, Int. J. Polym. Mater., 6, 2117 (1978)
- Ross LR, Handebeck SP, Bachmann MA, 43rd Annual Conference Composite SPI, 17-C (1988)
- Lipshit SD, Macosko CW, Polym. Eng. Sci., 16, 503 (1976)
- Tajima YA, Crozier DG, Polym. Eng. Sci., 26, 427 (1986)
- Mijovic J, Lee CH, J. Appl. Polym. Sci., 37, 899 (1989)
- Yang YS, Suspene L, Polym. Eng. Sci., 31, 321 (1991)
- Huang YJ, Lee LJ, AIChE J., 31, 1585 (1985)
- Brandrup J, Immergut EH, "Polymer Handbook," 3nd Ed., N.Y. (1989)
- Han CD, Lee DS, J. Appl. Polym. Sci., 33, 2859 (1987)
- Lee DS, Han CD, J. Appl. Polym. Sci., 33, 419 (1987)
- Lee DS, Han CD, Polym. Eng. Sci., 27, 955 (1987)