Applied Surface Science, Vol.254, No.4, 975-979, 2007
Heat transfer modelling and stability analysis of selective laser melting
The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the "balling" effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The "balling" effect at high scanning velocities (above similar to 20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate. (C) 2007 Elsevier B.V. All rights reserved.