화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.129, No.29, 8978-8987, 2007
What is the active species of cytochrome p450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates
We have investigated C-H hydroxylation of camphor by Compound I (Cpd I) of cytochrome P450(cam) in different electronic states and by its one-electron reduced and oxidized forms, using QM/MM calculations in the native protein/solvent environment. Cpd I species with five unpaired electrons (pentaradicaloids) are ca. 12 kcal/mol higher in energy than the ground state Cpd I species with three unpaired electrons (triradicaloids). The H-abstraction transition states of pentaradicaloids lie ca. 21 (9) kcal/mol above the triradicaloid (pentaradicaloid) reactants. Hydroxylation via pentaradicaloids is thus facile provided that they can react before relaxing to the ground-state triradicaloids. Excited states of Cpd I with an Fe(V)-oxo moiety lie more than 20 kcal/mol above the triradicaloid ground state in single-point gas-phase calculations, but these electronic configurations are not stable upon including the point-charge protein environment which causes SCF convergence to the triradicaloid ground state. One-electron reduced species (Cpd II) show sluggish reactivity compared with Cpd I in agreement with experimental model studies. One-electron oxidized species are more reactive than Cpd I but seem too high in energy to be accessible. The barriers to hydrogen abstraction for the various forms of Cpd I are generally not affected much by the chosen protonation states of the Asp297 and His355 residues near the propionate side chains of the heme or by the appearance of radical character at Asp297, His355, or the propionates.