Journal of the American Chemical Society, Vol.129, No.33, 10149-10158, 2007
Allosterically regulated supramolecular catalysis of acyl transfer reactions for signal amplification and detection of small molecules
The advent of methods for the construction of supramolecular assemblies provides a route to exploring the benefits of artificial allosteric catalysts. To expand our ability to control reactions using supramolecular catalysts capable of changing shape in response to chemical input signals, we report the development and high yield syntheses of multidomain modular supramolecular catalysts. These structures can be chemically interconverted between relatively inactive and catalytically active states depending on their shape. Furthermore, this class of supramolecular catalysts can be made to respond to a range of analytes via the introduction of specific structure control elements responsible for binding analyte molecules. Herein, we describe several of these catalysts and their ability to regulate acyl transfer reactions allosterically. In addition, the generality of this approach to signal amplification and detection is examined by incorporating the acyl transfer reaction into a small molecule detection scheme consisting of (i) analyte binding to structure control sites of the catalytic supramolecular assemblies, (ii) enhanced catalytic activity turned on by the resulting shape change, thereby allowing for signal amplification of the binding event, and (iii) signal detection by analysis of the products of the catalytic reaction.