화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.129, No.33, 10171-10180, 2007
Nitrate adsorption and reduction on Cu(100) in acidic solution
Nitrate adsorption and reduction on Cu(100) in acidic solution is studied by electrochemical methods, in situ electrochemical scanning tunneling microscopy (EC-STM), surface enhanced Raman spectroscopy (SERS), and density functional theory (DFT) calculations. Electrochemical results show that reduction of nitrate starts at -0.3 V vs Ag/AgCl and reaches maximum value at -0.58 V. Over the entire potential region interrogated adlayers composed of nitrate, nitrite, or other intermediates are observed by using in situ STM. From the open-circuit potential (OCP) to -0.22 V vs Ag vertical bar AgCl, the nitrate ion is dominant and forms a (2 x 2) adlattice on the Cu(100) surface while nitrate forms a dominantly c(2 x 2) structure from -0.25 to -0.36 V. The interconversion between the nitrate and nitrite adlattices is observed. DFT calculations indicate that both nitrate and nitrite are twofold coordinated to the Cu(100) surface.