Polymer(Korea), Vol.19, No.5, 569-577, September, 1995
Hemicyanine형 염료가 도입된 Sol-Gel 실리카 유리의 제조 및 미선형 광학 특성
Preparation and Nonlinear Optical Properties of Sol-Gel Silica Glass with Hemicyanine-type Chromophore
초록
비선형 광학 소자로의 응용을 위해 sol-gel 가공방법으로 hemicyanine형의 염료가 실리카 유리 매트릭스에 결합된 무기-유기물 복합체를 제조하였다. 스핀 코팅에 의해 얻은 박막을 경화 및 극성 배향시킨 후 AFM을 이용하여 표면을 관찰한 결과 거칠기가 2nm 이하로 깨끗하고 편평하였으며 높은 극성배향 전압에서도 표면손상이 그다지 크지 않았다. 이 박막의 광학 비선형성은 박막의 가공조건, 극성배향 전압 및 시간에 따라 γ33=1.6∼5.0pm/V의 값을 나타냈으며 상온에서 47일간 방치한 후에 측정된 비선형 계수값이 초기의 값과 유사하여 이 복합체 박막의 안정성이 탁월함을 확인할 수 있었다.
Inorganic-organic hybrid materials which incorporated a hemicryanine-type chromophore in silica matrix for nonlinear optics applications were prepared by sol-gel processing technique. According to the AFM studies on the film samples of resulting hybrids, the surface roughness of both cured and poled sot-gel films was within 2nm. In the case of the sample subjected to high poling voltage, surface damage due to the inhomogeneous corona discharge was not significant. The electro-optic coefficient (γ33) obtained from the different sol-gel processing conditions, poling voltage and time, ranged from 1.6 to 5.0 pm/V. It was found that the sol-gel films exhibited a stable alignment of the chromorphores, as observed by no decay even after 47 days.
- Korotky SK, Eisenstein G, Tucker RS, Veselka JJ, Raybon G, Appl. Phys. Lett., 50, 1631 (1987)
- Scraffuer JH, Hayes RR, J. Lightwave Tech., 12, 503 (1994)
- Martin WE, Appl. Phys. Lett., 26, 562 (1975)
- Leonberger FJ, Opt. Lett., 5, 312 (1980)
- Lee Ks, Samoc M, Prasad PN, "Comprehensive Polymer Science," 1st Supplement Vol. (Eds: S.L. Aggarawal and S. Russo), Pegamon Press, Oxford (1992)
- VanTomme E, VanDaele PP, Baets RG, Lagasse PE, IEEE J. Quant. Electron., 27, 778 (1991)
- Girton DG, Kwiatkowski SL, Lipscomb GF, Lytel RS, Appl. Phys. Lett., 58, 1730 (1991)
- Teng CC, Appl. Phys. Lett., 60, 1538 (1992)
- VanTomme E, VanDaele P, Baets R, Mohlman GR, Diemer MBJ, J. Appl. Phys., 69, 6273 (1991)
- Wu JW, Valley JF, Ermer S, Binkley ES, Kenney JT, Lytel R, Appl. Phys. Lett., 59, 2213 (1991)
- Walsh CA, Burland DM, Lee VY, Miller RD, Smidth BA, Twieg RJ, Volksen W, Macromolecules, 26, 3720 (1993)
- Jungbouer D, Teraoka I, Yoon DY, Reck B, Swalen JD, Twieg R, J. Appl. Phys., 69, 8011 (1991)
- Shi Y, Steier WH, Appl. Phys. Lett., 60, 2577 (1992)
- Eich M, Reck B, Yoon DY, Willson CG, Bjorklund GC, J. Appl. Phys., 66, 3241 (1989)
- Jungbouer D, Reck B, Twieg R, Yoon DY, Willson CG, Swalen JD, Appl. Phys. Lett., 56, 2610 (1990)
- Chen M, Dalton LR, Yu LP, Shi YQ, Steier WH, Macromolecules, 25, 4032 (1992)
- Ranon PM, Shi Y, Steier WH, Xu C, Wu B, Dalton LR, Appl. Phys. Lett., 62, 2605 (1993)
- Mandel BK, Chen YM, Lee JY, Kamer J, Tripathy S, Appl. Phys. Lett., 58, 2459 (1991)
- Ulich DR, Chemtech., 242 (1988)
- Brinker CJ, Scherer GW, "Sol-Gel Science," Academic Press, Boston (1990)
- Kim J, Plawsky JL, Laperuta R, Korenowsky GM, Chem. Mater., 4, 249 (1992)
- Jeng RJ, Chen YM, Jain AK, Kumer J, Tripathy SK, Chem. Mater., 4, 972 (1992)
- Moon KJ, Shim HK, Lee KS, Mol. Cryst. Liq. Cryst., 249, 91 (1994)
- Moon KJ, Shim HK, Lee KS, Zieba J, Prasad PN, Macromolecules, submitted (1995)
- Teng CC, Man HT, Appl. Phys. Lett., 56, 30 (1990)
- Marder SR, Perry JW, Yakymyshyn CP, Chem. Mater., 6, 1137 (1994)
- Hill RH, Knoesen A, Morta-Zavi MA, Appl. Phys. Lett., 65, 1774 (1994)
- Chollet PA, Gadret G, Kajzar F, Raimond P, SPIE Proced., 2143, 54 (1994)