화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.5, 569-577, September, 1995
Hemicyanine형 염료가 도입된 Sol-Gel 실리카 유리의 제조 및 미선형 광학 특성
Preparation and Nonlinear Optical Properties of Sol-Gel Silica Glass with Hemicyanine-type Chromophore
초록
비선형 광학 소자로의 응용을 위해 sol-gel 가공방법으로 hemicyanine형의 염료가 실리카 유리 매트릭스에 결합된 무기-유기물 복합체를 제조하였다. 스핀 코팅에 의해 얻은 박막을 경화 및 극성 배향시킨 후 AFM을 이용하여 표면을 관찰한 결과 거칠기가 2nm 이하로 깨끗하고 편평하였으며 높은 극성배향 전압에서도 표면손상이 그다지 크지 않았다. 이 박막의 광학 비선형성은 박막의 가공조건, 극성배향 전압 및 시간에 따라 γ33=1.6∼5.0pm/V의 값을 나타냈으며 상온에서 47일간 방치한 후에 측정된 비선형 계수값이 초기의 값과 유사하여 이 복합체 박막의 안정성이 탁월함을 확인할 수 있었다.
Inorganic-organic hybrid materials which incorporated a hemicryanine-type chromophore in silica matrix for nonlinear optics applications were prepared by sol-gel processing technique. According to the AFM studies on the film samples of resulting hybrids, the surface roughness of both cured and poled sot-gel films was within 2nm. In the case of the sample subjected to high poling voltage, surface damage due to the inhomogeneous corona discharge was not significant. The electro-optic coefficient (γ33) obtained from the different sol-gel processing conditions, poling voltage and time, ranged from 1.6 to 5.0 pm/V. It was found that the sol-gel films exhibited a stable alignment of the chromorphores, as observed by no decay even after 47 days.
  1. Korotky SK, Eisenstein G, Tucker RS, Veselka JJ, Raybon G, Appl. Phys. Lett., 50, 1631 (1987) 
  2. Scraffuer JH, Hayes RR, J. Lightwave Tech., 12, 503 (1994) 
  3. Martin WE, Appl. Phys. Lett., 26, 562 (1975) 
  4. Leonberger FJ, Opt. Lett., 5, 312 (1980)
  5. Lee Ks, Samoc M, Prasad PN, "Comprehensive Polymer Science," 1st Supplement Vol. (Eds: S.L. Aggarawal and S. Russo), Pegamon Press, Oxford (1992)
  6. VanTomme E, VanDaele PP, Baets RG, Lagasse PE, IEEE J. Quant. Electron., 27, 778 (1991) 
  7. Girton DG, Kwiatkowski SL, Lipscomb GF, Lytel RS, Appl. Phys. Lett., 58, 1730 (1991) 
  8. Teng CC, Appl. Phys. Lett., 60, 1538 (1992) 
  9. VanTomme E, VanDaele P, Baets R, Mohlman GR, Diemer MBJ, J. Appl. Phys., 69, 6273 (1991) 
  10. Wu JW, Valley JF, Ermer S, Binkley ES, Kenney JT, Lytel R, Appl. Phys. Lett., 59, 2213 (1991) 
  11. Walsh CA, Burland DM, Lee VY, Miller RD, Smidth BA, Twieg RJ, Volksen W, Macromolecules, 26, 3720 (1993) 
  12. Jungbouer D, Teraoka I, Yoon DY, Reck B, Swalen JD, Twieg R, J. Appl. Phys., 69, 8011 (1991) 
  13. Shi Y, Steier WH, Appl. Phys. Lett., 60, 2577 (1992) 
  14. Eich M, Reck B, Yoon DY, Willson CG, Bjorklund GC, J. Appl. Phys., 66, 3241 (1989) 
  15. Jungbouer D, Reck B, Twieg R, Yoon DY, Willson CG, Swalen JD, Appl. Phys. Lett., 56, 2610 (1990) 
  16. Chen M, Dalton LR, Yu LP, Shi YQ, Steier WH, Macromolecules, 25, 4032 (1992) 
  17. Ranon PM, Shi Y, Steier WH, Xu C, Wu B, Dalton LR, Appl. Phys. Lett., 62, 2605 (1993) 
  18. Mandel BK, Chen YM, Lee JY, Kamer J, Tripathy S, Appl. Phys. Lett., 58, 2459 (1991) 
  19. Ulich DR, Chemtech., 242 (1988)
  20. Brinker CJ, Scherer GW, "Sol-Gel Science," Academic Press, Boston (1990)
  21. Kim J, Plawsky JL, Laperuta R, Korenowsky GM, Chem. Mater., 4, 249 (1992) 
  22. Jeng RJ, Chen YM, Jain AK, Kumer J, Tripathy SK, Chem. Mater., 4, 972 (1992) 
  23. Moon KJ, Shim HK, Lee KS, Mol. Cryst. Liq. Cryst., 249, 91 (1994)
  24. Moon KJ, Shim HK, Lee KS, Zieba J, Prasad PN, Macromolecules, submitted (1995)
  25. Teng CC, Man HT, Appl. Phys. Lett., 56, 30 (1990) 
  26. Marder SR, Perry JW, Yakymyshyn CP, Chem. Mater., 6, 1137 (1994) 
  27. Hill RH, Knoesen A, Morta-Zavi MA, Appl. Phys. Lett., 65, 1774 (1994) 
  28. Chollet PA, Gadret G, Kajzar F, Raimond P, SPIE Proced., 2143, 54 (1994)