화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.5, 659-667, September, 1995
폴리에틸렌 필름에 아크릴산의 방사선 그라프트중합
Radiation-Induced Graft Copolymerization of Acrylic Acid onto Polyethylene Film
초록
아크릴산을 저밀도 폴리에틸렌 필름에 방사선 그라프트시켜 내구성이 우수한 알칼리전지용 분리격막을 얻기 위해서는 적절한 그라프트 반응조건이 필요하다. 본 연구에서는 동시 조사법으로 그라프트 반응을 수행하였으며, 그라프트 반응시 방사선 조사량, 조사선량률 효과, 금속염의 첨가와 용매효과 및 그라프트 필름의 물리적 특성을 조사하였다. 그라프트반응에서 단량체의 농도 및 방사선량을 증가시키면 그라프트율도 상승하였으며, 같은 조사선량에서는 선량률이 낮을 때 높은 그라프트율을 나타냈다. 용매로 증류수와 메탄을 3:7 혼합용액을 사용하고 단량체의 농도가 클때 그라프트율이 높았다.
The separator membrane of alkaline battery was made by radiation-grafting acrylic acid onto low density polyethylene film under the carefully and specially controlled grafting conditions. Graft copolymerization was carried out by simultaneous irradiation process in this experiment. The effect of absorbed dose, dose rate, cation salts and solvent on the grafting yield was evaluated. Grafting yield in simultaneous irradiation process increased with increasing the concentration of monomer and absorbed radiation dose. Low dose rate when irradiated with the same absorbed dose led an enhancement in grafting yield. It was observed that grafting yield was high in the solvent composition of H2O/MeOH(3/7) and in the high concentration of monomer.
  1. Jin JH, Yoon BM, Kim KY, Nho YC, Yee YK, 방사선그라프트 이용기술, KAERI/AR-368/93 (1993)
  2. Nho YC, Jin JH, 방사선그라프트에 의한 전지격막의 합성, KAERI/AR-372/93 (1993)
  3. Hegazy EA, Taher NH, Ebaid AR, Rabie AG, Kamel H, J. Appl. Polym. Sci., 39, 1029 (1990) 
  4. Hegazy EA, Ishigaki I, Okamoto J, J. Appl. Polym. Sci., 26, 3117 (1981) 
  5. Kaji K, Abe Y, Murai M, Nishioka N, Kosai K, J. Appl. Polym. Sci., 47, 1427 (1993) 
  6. Omichi H, Chundury D, Stannett V, J. Appl. Polym. Sci., 32, 4827 (1986) 
  7. Mino G, Kazerman S, J. Polym. Sci., 31, 242 (1952) 
  8. Tadashi A, Junko T, Jpn. Kokai Tokyo Koho 86/297, 664
  9. Nho YC, Garnett JL, Dworjanyn PA, J. Polym. Sci. A: Polym. Chem., 30, 1221 (1992)
  10. Mukherjee AK, Gupta BD, J. Appl. Polym. Sci., 30, 3479 (1985) 
  11. Kaji K, J. Appl. Polym. Sci., 28, 3767 (1983) 
  12. Hegazy EA, J. Polym. Sci. A: Polym. Chem., 22, 493 (1984)
  13. Nho YC, Sugo T, Macuuchi K, Jin JH, Polym.(Korea), 17(4), 433 (1993)
  14. Ishigaki I, Sugo T, Senoo K, Takayama T, Machi S, Okamota J, Okada T, Radiat. Phys. Chem., 18, 899 (1981) 
  15. O'Neill T, J. Polym. Sci. A: Polym. Chem., 10, 569 (1972) 
  16. Guthrie JT, Kotov S, J. Appl. Polym. Sci., 37, 39 (1989) 
  17. Tabaddor SH, Fazilat F, Gouloubandi R, J. Macromol. Sci.-Chem., A13(3), 1213 (1979)
  18. Collinson E, Dainton FS, Smith DR, Trudel GJ, Tazuke S, Discuss. Faraday. Soc., 29, 188 (1960) 
  19. Huglin MB, Johnson BL, J. Appl. Polym. Sci., 16, 921 (1972) 
  20. Razzak MT, Otsuhata K, Tabata Y, J. Appl. Polym. Sci., 33, 2345 (1987) 
  21. Byrne GA, Arthur JC, J. Appl. Polym. Sci., 14, 3093 (1970) 
  22. Omichi H, Chundury D, Stannet VT, J. Appl. Polym. Sci., 32, 4 (1986)
  23. Sasuga T, Arki K, Kuriyama I, Kobunshi Ronbunshu, 32, 83 (1975)