화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.5, 668-675, September, 1995
Poly(butylene terephthalate-imide)s의 용융 중합 및 열적 성질
Melt Polymerization of Poly(butylene terephthalate-imide)s and Their Thermal Properties
초록
Poly(butylene terephthalate-imide) (PBI) 공중합체들을 에스테르 교환반응과 용융 중축합 반응의 두 단계 반응으로 합성하였다. 1H-NMR 분석으로두터 공단량체 공급비와 공중합체내 조성비가 거의 일치함을 확인하였다. 또 PBI 공중합체들의 분자량은 고온 GPC 분석으로부터 Mn=1.4∼2.9×104 g/mol, Mw/Mn=2.27∼2.54의 값을 얻었으며 o-chlorophenol 용매를 사용하여 측정한 고유점도(Ⅳ)는 30℃에서 0.60∼0.75 dL/g의 값을 나타내었다. 공중합체들의 DSC 분석 결과 이미드 반복단위의 함량이 증가함에 따라 Tm,ΔHm, Tmc는 직선적인 감소를, 그리고 Tg, Tcc는 상응하는 증가를 보였다. 이미드 함량에 따른 Tg의 변화는 Fox equation으로부터 약간의 차이를 보였는데 이는 van Krevelen 식에 의해 계산된 polyesterimide 단일 중납체의 Tg가 실제값 보다 낮기 때문으로 생각되었다. TGA로부터 이미드 함량이 증가할수록 최대분해온도 및 800℃에서의 잔류량이 증가함을 확인하였다.
Poly(butylene terephthalate-imide) (PBI) copolymers were synthesized by two-stage esterification and polycondensation reactions. Compositions of PBI copolymers were characterized both by IR and 1H-NMR. 1H-NMR analysis showed that the compositions of PBI copolymers were nearly the same as those of oligomer feed ratios. High temperature GPC analysis of PBI copolymers showed Mn=1.4∼2.9×104 g/mol and Mw/Mn=2.27∼2.54. The intrinsic viscosities of PBI copolymers were in the range of 0.60∼0.75 dL/g in o-chlorophenol at 30℃. It was found from the DSC experiments that Tm, ΔHm, and Tmc of PBI copolymers decreased, while Tg and Tcc increased with increasing imide content in the copolymer. The change of Tg's of copolymers exhibited a little deviation from Fox's equation. This was considered to be due to the underestimation of Tg value of homo poly (ester-imide) by van Krevelen's equation. The maximum decomposition temperature and char yield at 800℃ from the TGA analysis of PBI copolymers increased as the content of imide unit increased.
  1. Jadhav JY, Kantor SW, "Encyclopedia of Polym. Sci. and Eng.," 2nd Ed., vol. 12, p. 75, p. 217, Wiley Interscience, New York (1985)
  2. Cheng SZD, Pan R, Wunderlich B, Makromol. Chem., 189, 2443 (1988) 
  3. Runt J, Miley DM, Zhang X, Gallagher KP, McFeaters K, Fishburn J, Macromolecules, 25, 1929 (1992) 
  4. Onishi Y, Nakai T, Polym. J., 24, 833 (1992) 
  5. Nichlos ME, Robertson RE, J. Polym. Sci. B: Polym. Phys., 30, 755 (1992) 
  6. Marrs W, Peters RH, Still RH, J. Appl. Polym. Sci., 23, 1063 (1979) 
  7. Kricheldorf HR, "Handbook of Polymer Synthesis," p. 941, Marcel Dekker Inc., New York (1992)
  8. 井上和夫, 高分子, 39, 104 (1990)
  9. Dickinson PR, Sung SDP, Macromolecules, 25, 3751 (1992) 
  10. Feld WA, Ramalingam B, Harris FW, J. Polym. Sci. A: Polym. Chem., 22, 831 (1984)
  11. Meyer JF, U.S. Patent, 3,426,098 (1969)
  12. Shen DC, U.S. Patent, 4,362,861 (1982)
  13. Kishanprasad VS, Gedam PH, J. Appl. Polym. Sci., 48, 1151 (1993) 
  14. Kricheldorf HR, Pakull R, J. Polym. Sci. C: Polym. Lett., 23, 413 (1985)
  15. Kricheldorf HR, Schwarz G, Polymer, 32, 5 (1991)
  16. Pardey R, Adduci J, Lenz RW, Macromolecules, 25, 5060 (1992) 
  17. Dickinson PR, Sung CSP, Macromolecules, 25, 3758 (1992) 
  18. Krevelen DW, "Properties of Polymers," 1st Ed., p. 131, Elsevier Science Publishing Co. Inc., New York (1990)