Langmuir, Vol.23, No.16, 8624-8631, 2007
Voltage gated carbon nanotube membranes
Membranes composed of an array of aligned carbon nanotubes, functionalized with charged molecular tethers, show voltage gated control of ionic transport through the cores of carbon nanotubes. The functional density of tethered charge molecules is substantially increased by the use of electrochemical grafting of diazonium salts. Functionality can be forced to occur at the CNT tip entrances by fast fluid flow of an inert solvent through the core during electrochemical functionalization. The selectivity between Ru(bi-pyridine)(3)(2+) and methyl viologen(2+) flux is found to be as high as 23 with -130 mV bias applied to the membrane as the working electrode. Changes in the flux and selectivity support a model where charged tethered molecules at the tips are drawn into the CNT core at positive bias. For molecules grafted along the CNT core, negative bias extends the tethered molecules into the core. Electrostatically actuated tethers induce steric hindrance in the CNT core to mimic voltage gated ion channels in a robust large area platform.