화학공학소재연구정보센터
Langmuir, Vol.23, No.21, 10539-10545, 2007
Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules
Polymer-stabilized gold nanoparticles (AuNPs) were prepared and encoded with a range of surface-enhanced Raman reporter molecules. A range of as-synthesized polymers produced by reversible addition fragmentation chain transfer (RAFT) polymerization were demonstrated to self-assemble at the surface of AuNPs dispersed in water. The method involved the coprecipitation of polymer-gold conjugates by the addition of polymer dissolved in a water-miscible solvent to gold AuNPs dispersed in water. This method represents a simplification of the preparation of polymer-stabilized AuNPs compared with other published methods, in that the AuNPs do not need to be first transferred to an organic solvent. The process enabled the polymer stabilized AuNPs to be easily recovered by filtration or by phase transfer of the AuNPs to an organic solvent in which the RAFT polymer was soluble. The polymer-stabilized AuNPs were characterized by a range of methods including UV-visible spectrophotometry, transmission electron microscopy, thermogravimetric analysis, dynamic light scattering, and attenuated total reflection Fourier transform infrared spectroscopy. Furthermore, H-1 pulsed field gradient spin echo NMR was utilized to characterize the selfdiffusion of the polymer-stabilized AuNPs. Finally, we then demonstrated that these polymer-stabilized AuNPs maintained their ability to be encoded with surface-enhanced Raman spectroscopy reporter molecules.