Polymer Engineering and Science, Vol.47, No.10, 1650-1657, 2007
Dynamic and viscoelastic behavior of natural rubber/layered silicate nanocomposites obtained by melt blending
Vulcanized natural rubber/layered silicate (montmorillonite) nanocomposites prepared by melt blending with different contents of organoclay (0, 5, 10, 20 wt%) were investigated. The morphological characteristics of the materials were studied by transmission electron microscopy (TEM), wide angle X-ray diffraction, and dynamic mechanical thermal analysis (DMTA). X-ray spectra evidence some intercalation of the clay, while TEM results show a good dispersion of the clay and the occurrence of partial delamination. DMTA analysis with varying temperature shows that the peak of the loss modulus broadens by increasing the clay content within the material, though the peak temperature is scarcely affected. Mechanical reinforcement induced by the presence of the clay is evidenced by static tensile tests. At every clay content explored, dynamic experiments show a nonlinear behavior (Payne effect), which strongly increases with the amount of clay incorporated and is considerably more pronounced than in natural rubber filled with comparable amounts of conventional fillers. The viscoelastic behavior of the materials is investigated by recovery tests of low amplitude storage modulus, carried out after the application of a large strain perturbation, and by stress relaxation experiments.