화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.144, No.3, 687-691, 2007
CFD methods for the reduction of reactive gas emission from a paper laminating machine
In cooperation with the world's second largest manufacturer of beverage cartons (SIG Combibloc (R)) for liquid foodstuffs an innovative off-take for neutralisation of reactive gas in a paper laminating machine was constructed. A great challenge during engineering work was ensuring a high concentration of the reactive gas where needed and at the same time minimising work place impact in a machine basically without housing. Preliminary 2D-models of the machine geometry proved to be insufficient in describing all the governing flow phenomena. A simplified 3D-geometry containing all important parts of the complex machinery was necessary for accurate predictions. It was found that the driving force of air movement and transport of reactive gas (which acts as an adhesive agent) from the reaction zone in the interior of the laminating machine to the outside is a boundary flow caused by the rapid movement of carton material and rotating cylinders. A physically correct simulation result of the boundary flow is a premise for correct prediction of air flow in and around the machinery. Lacking experimental data (due to an inaccessible geometry) a worst case scenario was constructed by generating a grid and using turbulence models that maximised mass transport in the boundary layer region and thus emission of (tracer)gas from the machine. CFD simulations were done using the geometry preprocessor Gambit (TM), and the finite volume solver Fluent (TM). The results of the analysis of the emission paths from the machine were surprising and led to the construction of an effective off-take relatively far away from the emission source. The chosen position ensures low disturbance of highly sensitive flow patterns inside the machine and diffusive mixing, dilution and contamination of the surroundings. The effect of the new off-take is an immediate and significant rise in air quality in the vicinity of the laminating machine and ensures maximum allowed concentration in the plant area. The product quality furthermore is uncompromised by the working off-take which was another important goal of this work. (c) 2007 Elsevier B.V. All rights reserved.