Electrochimica Acta, Vol.53, No.3, 1127-1133, 2007
Development of a biosensor for glycated hemoglobin
The development of an electrochemical piezoelectric sensor for the detection of glycated hemoglobin is presented. The total hemoglobin (Hb) content is monitored with a mass-sensitive quartz crystal modified with surfactants, and the glycated fraction of the immobilized Hb is determined by subsequent voltarnmetric measurement of the coupled ferroceneboronic acid. Different modifications of the sensor were tested for their hemoglobin binding ability. Deoxycholate (DOCA) was found to be the most suitable among the examined modifiers. Piezoelectric quartz crystals with gold electrodes were modified with DOCA by covalent binding to a pre-formatted 4-aminothiophenol monolayer. The properties of the Hb binding to DOCA and the pH effect on this interaction were studied. In the proposed assay for glycated hemoglobin at first an Hb sample is incubated with ferroceneboronic acid (FcBA), which binds to the fructosyl residue of the glycated Hb. Then this preincubated Hb sample is allowed to interact with the DOCA-modified piezoelectric quartz crystal. The binding is monitored by quartz crystal nanobalance QCN). The amount of FcBA present on the sensor surface is determined by square wave voltammetry. The binding of FcBA results in well-defined peaks with an EO' of +200 mV versus Ag/AgC1 (1 M KC1). The peak height depends on the degree of glycated Hb in the sample ranging from 0% to 20% of total Hb. The regeneration of the sensing surface is achieved by pepsin digestion of the deposited Hb. Thus the sensor can be re-used more than 30 times. (c) 2007 Elsevier Ltd. All rights reserved.