Electrochimica Acta, Vol.53, No.3, 1140-1149, 2007
Electrochemical gating: A method to tune and monitor the (opto)electronic properties of functional materials
Electrochemical polarization of a crystalline, polymeric or nanoporous system or a single molecule may change the density of charge carriers in a controlled way, and hence the optical and electrical properties. If the system has two contacts, its electronic conductivity can be measured in situ as a function of the charge carrier density that is varied by the electrochemical potential. This is called electrochemical gating. Such investigations can reveal the nature of the charge carriers (mobile or localized) and the mechanism of electronic conduction. Here, we present a brief review of a number of systems including inorganic crystals, polymers, nanoporous quantum-dot solids, and single molecules for which electrochemical gating was used successfully in the study of the electronic properties. (c) 2007 Elsevier Ltd. All rights reserved.