화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.1, 116-125, January, 1996
두 섬유 Fragmentatior 시험법에 의한 탄소섬유/에폭시 복합재료의 내구성에 관한 연구
Study on the Durability of Carbon Fiber/Epoxy Composite by Two Fiber Fragmentation Test
초록
탄소섬유/에폭시 복합재료에서 계면전단강도의 수분에 대한 내구성을 조사하기 위해 두섬유 fragmentation 시험법을 사용하였다. Dogbone형의 두섬유 fragmentation 시험편을 제작하여 75℃의 증류수에 60일까지 침지시켜 수분 흡수량을 측정하였으며, 수분 흡수량에 따른 계면특성 및 계면전단강도를 평가하였다. 그 결과, 침지시간의 경과에 따라 시험편에 흡수된 수분량은 증가하였고, 이러한 수분 흡수량의 증가는 섬유와 수지의 계면을 열화시켜 파단된 섬유길이의 임계 aspect ratio (임계섬유장/섬유직경)를 증가시켰으며, 이것은 곧 수분흡수량의 증가에 의해 복합재료에서 계면전단강도의 감소를 나타내는 것이다.
Two fiber fragmentation technique was used to investigate the influence of hydrothermal on the interfacial shear strength in the carbon fiber/epoxy system. The uptake of water (wt%) and interfacial shear strength were evaluated up to 60 days of immersion time in distilled water at 75℃ using two fiber fragmentation test specimens of dogbone shape. As a result, it was found that moisture absorption of two fiber doggone specimens increased with time of exposure to hydrothermal. This induced to increase the average critical aspect ratio (Lc/Df) of the fiber fragments. The increase of Lc/Df for hydrothermally treated samples indicated the decrease of the interfacial shear strength by increasing of moisture absorption.
  1. Bian XS, Ambrosio L, Polym. Compos., 12, 333 (1991) 
  2. Lowe GB, Lee TCP, Int. J. Adhes. Adhes., 14, 85 (1994) 
  3. Wagner HD, Lustiger A, Composites, 25, 613 (1994) 
  4. Gaur U, Miller B, Polym. Compos., 11, 4 (1990)
  5. Miller B, Muri P, Combust. Sci. Technol., 28, 17 (1987)
  6. Gaur U, Miller B, Combust. Sci. Technol., 34, 35 (1989)
  7. Moon CK, J. Appl. Polym. Sci., 44, 561 (1992) 
  8. Moon CK, J. Appl. Polym. Sci., 45, 443 (1992) 
  9. Moon CK, J. Appl. Polym. Sci., 54(1), 73 (1994) 
  10. Takaku A, Arridge RGG, J. Phys. D.: Appl. Phys., 6, 2038 (1973) 
  11. Bowling J, Groves GW, J. Mater. Sci., 14, 431 (1979) 
  12. Favre J, Merienne MC, Int. J. Adhes. Adhes., 1, 311 (1981) 
  13. Penn LS, Lee SM, Fiber Sci. Technol., 17, 91 (1982) 
  14. Outwater JO, Murphy MC, Modern Plast., 47, 16 (1970)
  15. Drzal LT, Rich MJ, J. Adhes., 16, 1 (1982)
  16. Drzal LT, SAMPE J., 7 (1983)
  17. Bascom WD, Jensen RM, J. Adhes., 19, 219 (1986)
  18. Curtin WA, J. Mater. Sci., 26, 5239 (1991) 
  19. Waterbury MC, Drzal LT, J. Comp. Tech. Res., 13, 22 (1991)
  20. Baxevanakis C, Combust. Sci. Technol., 48, 47 (1993)
  21. Netravali AN, Combust. Sci. Technol., 35, 13 (1989)
  22. Netravali AN, Polym. Compos., 10, 4 (1989)
  23. Mandell JF, Int. J. Adhes. Adhes., 5, 40 (1980)
  24. Moon CK, Mcdonough WG, Polym.(Korea), 19(6), 835 (1995)
  25. Kelly A, Tyson WR, J. Mech. Phys. Solids, 13, 329 (1965) 
  26. Miwa M, Osawa T, J. Appl. Polym. Sci., 25, 795 (1980) 
  27. Wagner HD, Eitan A, Appl. Phys. Lett., 56, 1965 (1990) 
  28. Yavin B, Wagner HD, Polym. Compos., 12, 436 (1991) 
  29. Wagner HD, Wood JR, Adv. Compos. Lett., 2, 173 (1993)
  30. Shioya M, Proceeding of the Adhesion Society, 248 (1994)
  31. Weibull W, J. Appl. Mech., 18, 293 (1951)
  32. Asloun EM, J. Mater. Sci., 24, 3504 (1989) 
  33. Schutte CL, Composites, 25, 7 (1994)