화학공학소재연구정보센터
Energy Conversion and Management, Vol.49, No.1, 16-31, 2008
Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources
Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 <= N <= + 55 and 0.125 <= L <= 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element. (c) 2007 Elsevier Ltd. All rights reserved.