Polymer(Korea), Vol.20, No.3, 403-411, May, 1996
고강도 에폭시/폴리썰폰 블렌드의 경화거동(Ⅰ) : 등온 DSC 열분석
Cure Behavior of High Performance Epoxy/Polysulfone Blends(Ⅰ) : Isothermal DSC Analysis
초록
에폭시/폴리썰폰 혼합물의 등온경화과정에 있어서 경화온도와 혼합조성비가 경화반응기구 및 상분리구조 형성에 미치는 영향에 관하여 등온 열분석, 광학현미경 및 광산란법에 의하여 조사하였다. 경화온도의 범위는 180-240℃까지 변화하였으며, 에폭시/폴리썰폰의 조성변화는 80/20-50/50 (wt%)의 범위에서 살펴보았다. 경화반응기구의 등온열분석결과 경화온도를 낮출수록 그리고 폴리썰폰의 함량을 늘릴수록 경화반응속도가 지연되는 것을 볼 수 있었으며, 그 결과 형성된 상분리 구조는 분산상의 구조주기가 짧았다. 이는 에폭시의 경화반응에 따른 경화반응속도 및 상분리 속도의 경쟁과정에 의하여 경화온도를 낮출수록 그리고 PSF의 함량이 증가할수록 혼합물의 높은 점도로 인하여 경화반응속도보다 상분리속도가 느려짐에 기인된다는 것을 알 수 있었다.
For the cure process of epoxy (EP)/polysulfone (PSF) blends, we investigated the effects of cure temperature and blend composition on the cure kinetics by isothermal DSC scan method and structure development by optical microscopy and light scattering. The cure temperature range was 180-240℃ and the composition of EP/PSF was varied within 80/20-50/50 (wt%). Isothermal DSC analysis revealed that i) the lower the cure temperature and ii) the larger the PSF component, the slower was the cure reaction. By decreasing the cure temperature and increasing the content of PSF component, the rate of phase separation is considerably reduced, whole that of cure reaction is not so much. These results in a two phase structure with shorter periodic distance (or smaller domain size). These results could be interpreted in terms of a competitive progress of the crosslink reaction and of the phase separation during cure process.
- Bauer RS, "Epoxy Resin Chemistry," ACS Advances in Chemistry Series No. 114, American Chemical Society, Washington D.C. (1979)
- Lee H, Nevile K, "Handbook of Epoxy Resins," McGraw-Hill, New York (1967)
- Bucknall CB, Yoshii T, Br. Polym. J., 10, 53 (1978)
- Wang TT, Zupko HM, J. Appl. Polym. Sci., 26, 2391 (1981)
- Kunz SC, Sayre JA, Assink RA, Polymer, 23, 1897 (1982)
- Bartlet P, Pascault JP, Sautereau H, J. Appl. Polym. Sci., 30, 2955 (1985)
- Yamanaka K, Takagi Y, Inoue T, Polymer, 30, 1839 (1989)
- Yamanaka K, Inoue T, J. Mater. Sci., 25, 241 (1990)
- Moschior SM, Riccardi CC, Williams RJJ, Verchere D, Santerean H, Pascault JP, J. Appl. Polym. Sci., 42, 717 (1991)
- Bucknall CB, Patridge LK, Polymer, 24, 639 (1983)
- Bucknall CB, Patridge IK, Polym. Eng. Sci., 26, 54 (1986)
- Raghava RS, J. Polym. Sci. B: Polym. Phys., 25, 1017 (1987)
- Yamanaka K, Inoue T, Polymer, 30, 662 (1989)
- Hourston DJ, Lane JM, Polymer, 33, 1379 (1992)
- Kim BS, Chiba T, Inoue T, Polymer, 34, 2809 (1993)
- Yoon T, Kim BS, Kim J, Lee DS, Polym.(Korea), 20(3), 412 (1996)
- Lee DS, Youn T, Park YH, Kim J, Polym.(Korea), 18(5), 754 (1994)
- Chambon F, Winter HH, J. Rheol., 30, 367 (1986)
- Flory JL, "Principle of Polymer Chemistry," Cornell Univ., Press, New York (1953)
- Ryan ME, Dutta A, Polymer, 20, 203 (1979)
- Mijovic J, Kim J, Slaby J, J. Appl. Polym. Sci., 29, 1449 (1984)
- Shim JS, Lee W, Jang J, Polym. Bull., 25, 661 (1991)
- Kanny JM, Tririsano A, Polym. Eng. Sci., 31, 1426 (1991)
- Oyanguren PA, Williams RJJ, J. Appl. Polym. Sci., 47, 1373 (1993)