화학공학소재연구정보센터
Polymer(Korea), Vol.32, No.2, 163-168, March, 2008
바이오-플로팅시스템을 통한 Tailor-Made 3D PCL Scaffold 제작
Fabrication of Tailor-Made 3D PCL Scaffold Using a Bio-Plotting Process
E-mail:
초록
생체 친화적이며 생분해성 고분자 소재인 poly(ε-caprolactone)(PCL)을 rapid prototyping(RP) 공정인 바이오플로팅 시스템을 통해 세포 재생용 지지체(scaffold)를 제작하였다. 제작된 PCL 지지체는 DMA(dynamic mechanical analyzer)를 통해 동일한 재료로 제작된 기존 염침출법(salt-leaching)에 의한 지지체보다 월등히 향상된 기계적 강도를 갖고 있음을 확인하였고, 이는 기존 전통적인 세포지지체 제작에서 문제점중의 하나인 기계적인 강도적인 측면을 보완하여, 뼈조직 재생에 유용하게 활용될 수 있을 것으로 예상된다. 지지체 내부의 구조는 세포의 증식과 이동 및 영양분의 공급이 지속될 수 있도록 전체적으로 연결된 통로로 구성되어 있고, 다양한 세포의 증식이 가능하도록 지지체의 공극 크기와 strand의 굵기 등을 조절할 수 있으며, 이를 이용하여 대체하고자 하는 생체조직의 특성에 맞도록 기계적 강도를 조정할 수 있음을 확인하였다. 제조된 PCL지지체는 연골세포를 통하여 셀 컬쳐링 되었고, 3차원 세포 지지체로서의 충분한 가능성을 보여주었다.
Biomedical scaffold for tissue regeneration was fabricated by one of rapid prototyping processes, bioplotting system, with a biodegradable and biocompatible poly(ε-carprolactone)(PCL). Through dynamic mechanical test, it was observed that the PCL scaffold manufactured by the bioplotting process has the superior mechanical properties compared to the conventional scaffold fabricated by a salt-leaching process, and the plotted scaffold could be employed as a potential scaffold to regenerating hard and soft tissue. The plotted scaffold was consisted of porous structures, which were interconnected with each pore to help cells be easily adhered and proliferated in the wall of pore tunnels, and metabolic nutrients can be transported within the matrix. By using the plotting system, we could adjust the pore size, porosity, strand pitch, and, strand diameter of PCL scaffolds, which were important parameters to control mechanical properties of the scaffolds, and consequently we could determine that the mechanically controlled scaffolds could be used as a matching scaffold for any required mechanical properties of the target organ. The fabricated 3D PCL scaffold showed enough possibility as a 3D biomedical scaffold, which was cellcultured with chondrocytes.
  1. Khang GS, Kim MS, Min BH, Lee IW, Rhee JM, Lee HB, Tissue Engineering and Regenerative Medicine, 3, 376 (2006)
  2. Sachlos E, Czernuszka JT, European Cells and Materials, 5, 29 (2003)
  3. Pfister A, Landers R, Laib A, Hubner U, Schmelzeisen R, Mulhaupt R, J. Polym. Sci. A: Polym. Chem., 42(3), 624 (2004)
  4. Thapa A, Miller DC, Webster TJ, Haberstroh KM, Biomaterials, 24, 2915 (2003)
  5. Agrawal CM, Ray RB, J. Biomed. Mater. Res., 55, 141 (2001)