화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.3, 253-260, April, 2008
Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam
E-mail:
Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.
  1. Raj RG, Kokta BV, Maldas D, Daneault C, J. Appl. Polym. Sci., 37, 1089 (1989)
  2. Bledzki AK, Gassan J, Prog. Polym. Sci, 24, 221 (1999)
  3. Chow CPL, Xing XS, Li RKY, Compos. Sci. Technol., 67, 306 (2007)
  4. Lim YM, Lee YM, Nho YC, Macromol. Res., 13(4), 327 (2005)
  5. Oh SD, Byun BS Lee SH, Choi SH, Macromol. Res., 14(2), 194 (2006)
  6. Dorschner H, Lappan U, Lunkwitz K, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 139, 495 (1998)
  7. Han SO, Han MH, ACS Polym. Mater. Sci. Eng., 89, 590 (2003)
  8. Han YH, Han SO, Cho D, Kim HI, Compos. Interfaces, 14(5-6), 559 (2007)
  9. Han YH, Han SO, Cho D, Kim HI, Macromol. Symp., 245-246, 539 (2006)
  10. Gassan J, Bledzki AK, Compos. Sci. Technol., 59, 1303 (1999)
  11. Sreekala MS, Kumaran MG, Thomas S, J. Appl. Polym. Sci., 66(5), 821 (1997)
  12. Mohanty AK, Khan MA, Sahoo S, Hinrichsen G, J. Mater. Sci., 35(10), 2589 (2000)
  13. Geethamma VG, Joseph R, Thomas S, J. Appl. Polym. Sci., 55(4), 583 (1995)
  14. Cho D, Lee HS, Han SO, Park WH, in Proc. ACUN-5, Developments in Composites:Advanced, Infrastructural, Natural, and Nano-Composites, 462, Sydney (2006)
  15. Qiu W, Endo T, Hirotsu T, Eur. Polym. J., 42, 1059 (2006)
  16. Manfredi LB, Rodriguez ES, Wladyka-Przybylak M, Vazquez A, Polym. Degrad. Stabil., 91, 255 (2006)
  17. http://www.sewonchem.co.kr/ Sewon Chem. Co., Ltd
  18. http://www.kolonglotech.co.kr/products/fiber/industry.asp Kolonglotech Co., Ltd
  19. http://www.eb-tech.com/products/elv.html EB_Tech Co., Ltd
  20. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W, Comprehensive Cellulose Chemistry: I. Fundamentals and analytical Methods, Weinheim, Germany, Wiley-VCH (1998)
  21. Mannan KM, Polymer, 34, 2485 (1993)
  22. Ray D, Sarkar BK, Das S, Rana AK, Compos. Sci. Technol., 62, 911 (2002)
  23. Wunderlich B, Assignment of the Glass Transition, R. J. Seyler, Ed., ASTM STP 1249, 17 (1994)
  24. Sanadi R, Hunt JF, Caulfield DF, Kovacsvolgyi G, Destree B, Conference on Woodfiber-Plastic Composites, 121 (2001)
  25. Rana AK, Mitra BC, Banerjee AN, J. Appl. Polym. Sci., 71(4), 531 (1999)
  26. Siegel R, Chang S, Ash B, Stone J, Ajayan P, Doremus R, Sci. Mater., 44, 2061 (2001)
  27. Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162 (2001)
  28. Seguela R, Rietsch F, Polymer, 27, 532 (1986)
  29. Hon David NS, Shiraishi N, Wood and cellulose chemistry, New York and Basel, Mercel Dekker Inc. (1991)
  30. Ouajai S, Shanks RA, Polym. Degrad. Stabil., 89, 327 (2005)